论文标题
$ \ MATHCAL {N} = 1 $超级拓扑递归
$\mathcal{N}=1$ Super Topological Recursion
论文作者
论文摘要
我们介绍了$ \ Mathcal {n} = 1 $抽象超级循环方程的概念,并提供了两种等效的求解方法。第一种方法是一种基于局部超级光谱曲线的几何形状,可以将其视为Eynard-orderin拓扑递归的超对称概括。第二种方法基于超级通风结构的框架。由此产生的递归形式主义可用于计算相关函数,以获取与2D SuperGarvity相关的各种示例。
We introduce the notion of $\mathcal{N}=1$ abstract super loop equations, and provide two equivalent ways of solving them. The first approach is a recursive formalism that can be thought of as a supersymmetric generalization of the Eynard-Orantin topological recursion, based on the geometry of a local super spectral curve. The second approach is based on the framework of super Airy structures. The resulting recursive formalism can be applied to compute correlation functions for a variety of examples related to 2d supergarvity.