论文标题

在Riemann Zeta功能的某些傅立叶扩展上

On certain Fourier expansions for the Riemann zeta function

论文作者

Patkowski, Alexander E.

论文摘要

我们以有关Riemann Zeta功能的傅立叶扩展的最新论文为基础。我们为某些$ l $ functions建立了傅立叶扩展,并提供涉及whittaker函数$ W_ {γ,μ}(z)$的系列表示。还陈述了Riemann Zeta功能的倒数的傅立叶扩展。第三部分通过使用Mellin Transforms为其傅立叶系数构建积分公式,为Riemann XI函数提供了新的扩展。

We build on a recent paper on Fourier expansions for the Riemann zeta function. We establish Fourier expansions for certain $L$-functions, and offer series representations involving the Whittaker function $W_{γ,μ}(z)$ for the coefficients. Fourier expansions for the reciprocal of the Riemann zeta function are also stated. A new expansion for the Riemann xi function is presented in the third section by constructing an integral formula using Mellin transforms for its Fourier coefficients.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源