论文标题

激光等离子体中的时间分辨快速动力

Time-resolved fast turbulent dynamo in a laser plasma

论文作者

Bott, A. F. A., Tzeferacos, P., Chen, L., Palmer, C. A. J., Rigby, A., Bell, A., Bingham, R., Birkel, A., Graziani, C., Froula, D. H., Katz, J., Koenig, M., Kunz, M. W., Li, C. K., Meinecke, J., Miniati, F., Petrasso, R., Park, H. -S., Remington, B. A., Reville, B., Ross, J. S., Ryu, D., Ryutov, D., Séguin, F., White, T. G., Schekochihin, A. A., Lamb, D. Q., Gregori, G.

论文摘要

了解湍流等离子体中的磁场产生和扩增对于考虑到宇宙中磁场的观察至关重要。最近,通过在低磁性pardtl-number等离子体的激光设施上进行了实验,将这些领域的起源和维持的理论框架归因于所谓的波动发电机($ \ mathrm {pm {pm} <1 $)。但是,同一框架提出,当$ \ mathrm {pm} \ gtrsim 1 $(与许多天体物理环境(例如星系集群的群集介质)相关的政权)时,波动发电机应以不同的方式运行。本文报告了一个新实验,该实验首次创建了实验室$ \ mathrm {pm} \ gtrsim 1 $等离子体发电机。我们提供了等离子体演化的时间分辨表征,测量温度,密度,流速和磁场,这使我们能够探索波动发电机操作的各个阶段。发现与随机运动的驱动尺度接近的结构中的磁能相比,其初始值与动态饱和相比增加了几乎三个数量级。结果表明,这些磁场的生长以比驾驶尺度随机运动的周转率高得多的速率发生。我们的结果表明,强剪切物产生的等离子湍流可以在驾驶量表上比对非螺旋波动元的理想MHD模拟更有效地产生场。这一发现可以有助于解释从天体物理系统的观察结果中推断出的大规模领域。

Understanding magnetic-field generation and amplification in turbulent plasma is essential to account for observations of magnetic fields in the universe. A theoretical framework attributing the origin and sustainment of these fields to the so-called fluctuation dynamo was recently validated by experiments on laser facilities in low-magnetic-Prandtl-number plasmas ($\mathrm{Pm} < 1$). However, the same framework proposes that the fluctuation dynamo should operate differently when $\mathrm{Pm} \gtrsim 1$, the regime relevant to many astrophysical environments such as the intracluster medium of galaxy clusters. This paper reports a new experiment that creates a laboratory $\mathrm{Pm} \gtrsim 1$ plasma dynamo for the first time. We provide a time-resolved characterization of the plasma's evolution, measuring temperatures, densities, flow velocities and magnetic fields, which allows us to explore various stages of the fluctuation dynamo's operation. The magnetic energy in structures with characteristic scales close to the driving scale of the stochastic motions is found to increase by almost three orders of magnitude from its initial value and saturate dynamically. It is shown that the growth of these fields occurs exponentially at a rate that is much greater than the turnover rate of the driving-scale stochastic motions. Our results point to the possibility that plasma turbulence produced by strong shear can generate fields more efficiently at the driving scale than anticipated by idealized MHD simulations of the nonhelical fluctuation dynamo; this finding could help explain the large-scale fields inferred from observations of astrophysical systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源