论文标题

爱丁顿启发的域墙壁和其他缺陷的出生重力

Domain walls and other defects in Eddington-inspired Born-Infeld gravity

论文作者

Avelino, P. P., Sousa, L.

论文摘要

我们研究了以$κ$的函数为$κ$的弱场限制的域壁和其他缺陷溶液,这是该理论在一般相对性方面的唯一附加参数。我们在分析和数值上确定了域壁的内部结构,量化了其对$κ$的依赖性以及这种依赖对外部观察者测量的张力值的影响。我们发现,垂直于域壁的方向的压力可以分别明显大于或小于零的弱场极限,分别取决于$κ$是正还是负。我们进一步表明,广义的von laue条件指出,垂直压的平均值大约等于一般相对性的弱场极限,通常不仅在域壁上不仅在域壁上,而且在宇宙壁上,而且在宇宙壁上也不存在。我们认为,每当几何形状在确定缺陷结构中发挥重要作用时,在任何重力理论中通常都应预期违反广义von laue条件。

We investigate domain wall and other defect solutions in the weak-field limit of Eddington-inspired Born-Infeld gravity as a function of $κ$, the only additional parameter of the theory with respect to General Relativity. We determine, both analytically and numerically, the internal structure of domain walls, quantifying its dependency on $κ$ as well as the impact of such dependency on the value of the tension measured by an outside observer. We find that the pressure in the direction perpendicular to the domain wall can be, in contrast to the weak-field limit of General Relativity, significantly greater or smaller than zero, depending, respectively, on whether $κ$ is positive or negative. We further show that the generalized von Laue condition, which states that the average value of the perpendicular pressure is approximately equal to zero in the weak-field limit of General Relativity, does not generally hold in EiBI gravity not only for domain walls, but also in the case cosmic strings and spherically symmetric particles. We argue that a violation of the generalized von Laue condition should in general be expected in any theory of gravity whenever geometry plays a significant role in determining the defect structure.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源