论文标题

区分突变结

Distinguishing Mutant Knots

论文作者

Bishler, L., Dhara, Saswati, Grigoryev, T., Mironov, A., Morozov, A., Morozov, An., Ramadevi, P., Singh, Vivek Kumar, Sleptsov, A.

论文摘要

结理论是由物理学家和数学家积极研究的,因为它为许多物理和数学理论提供了连接的核心。结理论中具有挑战性的问题之一是区分突变结。突变结不会通过$ su(n)$的对称和 /或反对称表示的彩色打结来区分。一些突变结可以通过最简单的非对称表示$ [2,1] $来区分。但是,有一类突变结需要更复杂的表示,例如$ [4,2] $。在本文中,我们计算了表示$ [3,1] $和$ [4,2] $中的多项式多项式的多项式和差异,并研究其属性。

Knot theory is actively studied both by physicists and mathematicians as it provides a connecting centerpiece for many physical and mathematical theories. One of the challenging problems in knot theory is distinguishing mutant knots. Mutant knots are not distinguished by colored HOMFLY-PT polynomials for knots colored by either symmetric and or antisymmetric representations of $SU(N)$. Some of the mutant knots can be distinguished by the simplest non-symmetric representation $[2,1]$. However there is a class of mutant knots which require more complex representations like $[4,2]$. In this paper we calculate polynomials and differences for the mutant knot polynomials in representations $[3,1]$ and $[4,2]$ and study their properties.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源