论文标题

可分离凸优化问题的惯性原始双重动力学方法的收敛速率

Convergence Rates of Inertial Primal-Dual Dynamical Methods for Separable Convex Optimization Problems

论文作者

He, Xin, Hu, Rong, Fang, Ya-Ping

论文摘要

在本文中,我们提出了一个二阶连续二重动力学系统,具有时间依赖的正极阻尼项,用于与线性平等约束的可分离凸优化问题。通过Lyapunov函数方法,我们将提出的动力系统的渐近性质作为$ t \ to+\ infty $。收敛速率是针对阻尼系数的不同选择得出的。我们还表明,在外部扰动下获得的结果是可靠的。

In this paper, we propose a second-order continuous primal-dual dynamical system with time-dependent positive damping terms for a separable convex optimization problem with linear equality constraints. By the Lyapunov function approach, we investigate asymptotic properties of the proposed dynamical system as the time $t\to+\infty$. The convergence rates are derived for different choices of the damping coefficients. We also show that the obtained results are robust under external perturbations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源