论文标题
标量量子场的差异性通过生成函数
Diffeomorphisms of Scalar Quantum Fields via Generating Functions
论文作者
论文摘要
我们研究形式的差异性在标量场上的应用。我们给出了一个新的证据,表明相互作用的树幅度在由此产生的理论中消失了。我们的证明直接处于示意图,不吸引路径积分,并且通过生成功能分析进行进行,因此比以前的证据更有见地。在途中,我们提供了一些钟形多项式身份的新组合证明,我们就与组合勒克德尔变换的联系发表了评论。
We study the application of formal diffeomorphisms to scalar fields. We give a new proof that interacting tree amplitudes vanish in the resulting theories. Our proof is directly at the diagrammatic level, not appealing to the path integral, and proceeds via a generating function analysis so is more insightful than previous proofs. Along the way we give new combinatorial proofs of some Bell polynomial identities, and we comment on the connection with the combinatorial Legendre transform.