论文标题
银河系的凸出恒星形成历史受到双峰化学丰度分布的约束
The Milky Way's bulge star formation history as constrained from its bimodal chemical abundance distribution
论文作者
论文摘要
我们通过利用其恒星[Fe/H]和[mg/fe]分布功能的约束能力来对银河系凸起的恒星形成历史(SFH)进行定量分析。使用Apogee数据,我们确认了内部银河系3 kpc之内的先前建立的双峰[mg/fe] - [fe/h]分布。与太阳附近相比,凸起的高$α$种群以较低的[Fe/H]达到峰值。为了适应这些观察结果,我们使用了一个简单但灵活的星形形成框架,该框架假定了气体积聚和恒星形成的两个不同阶段,并系统地评估了广泛的多维参数空间。我们发现,数据有利于由初始starburst组成的三相SFH,其次是快速星形淬灭发作和冗长,静止的世俗进化阶段。在早期的Starburst期间,金属罚款,高$α$凸起的星([Fe/H] <0.0和[mg/fe]> 0.15)迅速形成(<2 Gyr)。高和低$α$序列之间的密度差距是由于淬火过程所致。富含金属的$ $α$种群([fe/h]> 0.0和[mg/fe] <0.15)然后在世俗相期间通过效率低下的恒星形成逐渐积累。这在质上与内磁盘的早期SFH一致。鉴于这种情况,预计年轻恒星(年龄<5 GYR)的一小部分将持续存在。这些结果结合了外乳术的观察结果,表明快速恒星淬灭过程是银河系恒星种群和一般星系人群中双峰分布的原因,因此在星系进化中起着至关重要的作用。
We conduct a quantitative analysis of the star formation history (SFH) of the Milky Way's bulge by exploiting the constraining power of its stellar [Fe/H] and [Mg/Fe] distribution functions. Using APOGEE data, we confirm the previously-established bimodal [Mg/Fe]--[Fe/H] distribution within 3 kpc of the inner Galaxy. Compared to that in the solar vicinity, the high-$α$ population in the bulge peaks at a lower [Fe/H]. To fit these observations, we use a simple but flexible star formation framework, which assumes two distinct stages of gas accretion and star formation, and systematically evaluate a wide multi-dimensional parameter space. We find that the data favor a three-phase SFH that consists of an initial starburst, followed by a rapid star formation quenching episode and a lengthy, quiescent secular evolution phase. The metal-poor, high-$α$ bulge stars ([Fe/H]<0.0 and [Mg/Fe]>0.15) are formed rapidly (<2 Gyr) during the early starburst. The density gap between the high- and low-$α$ sequences is due to the quenching process. The metal-rich, low-$α$ population ([Fe/H]>0.0 and [Mg/Fe]<0.15) then accumulates gradually through inefficient star formation during the secular phase. This is qualitatively consistent with the early SFH of the inner disk. Given this scenario, a notable fraction of young stars (age<5 Gyr) is expected to persist in the bulge. Combined with extragalactic observations, these results suggest that a rapid star formation quenching process is responsible for bimodal distributions in both the Milky Way's stellar populations and in the general galaxy population and thus plays a critical role in galaxy evolution.