论文标题

曲面上的S偶二和超对称性

S-duality and supersymmetry on curved manifolds

论文作者

Festuccia, Guido, Zabzine, Maxim

论文摘要

我们对$ {\ cal n} = 2 $超对称非线性阿贝尔理论的s偶尔进行系统研究。可以使用定位来计算这些理论中的某些超对称可观察物。我们指出的是,作为传统变换的本地化和s偶尔不兼容。对于这些理论,s偶和性应被解释为傅立叶变换,我们为此提供了一些证据。我们还建议对阿贝尔理论的共素学前态的概念,该概念具有相同的分区函数,作为给定的非阿布尔超对称理论。

We perform a systematic study of S-duality for ${\cal N}=2$ supersymmetric non-linear abelian theories on a curved manifold. Localization can be used to compute certain supersymmetric observables in these theories. We point out that localization and S-duality acting as a Legendre transform are not compatible. For these theories S-duality should be interpreted as Fourier transform and we provide some evidence for this. We also suggest the notion of a coholomological prepotential for an abelian theory that gives the same partition function as a given non-abelian supersymmetric theory.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源