论文标题
某些非竞争对称空间上的波动方程
Wave equation on certain noncompact symmetric spaces
论文作者
论文摘要
在本文中,我们证明了与G复合物的任何等级的非2级riemannian对称空间g/k的线性波方程的尖锐内核估计和分散性能。结果,我们推断出大型可允许对家庭的Strichartz不平等现象,并证明了相应的半线性方程的全球适应性结果,具有较低的规律性数据,如双曲线空间。
In this paper, we prove sharp pointwise kernel estimates and dispersive properties for the linear wave equation on noncompact Riemannian symmetric spaces G/K of any rank with G complex. As a consequence, we deduce Strichartz inequalities for a large family of admissible pairs and prove global well-posedness results for the corresponding semilinear equation with low regularity data as on hyperbolic spaces.