论文标题

某些非竞争对称空间上的波动方程

Wave equation on certain noncompact symmetric spaces

论文作者

Zhang, Hong-Wei

论文摘要

在本文中,我们证明了与G复合物的任何等级的非2级riemannian对称空间g/k的线性波方程的尖锐内核估计和分散性能。结果,我们推断出大型可允许对家庭的Strichartz不平等现象,并证明了相应的半线性方程的全球适应性结果,具有较低的规律性数据,如双曲线空间。

In this paper, we prove sharp pointwise kernel estimates and dispersive properties for the linear wave equation on noncompact Riemannian symmetric spaces G/K of any rank with G complex. As a consequence, we deduce Strichartz inequalities for a large family of admissible pairs and prove global well-posedness results for the corresponding semilinear equation with low regularity data as on hyperbolic spaces.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源