论文标题

具有边界的歧管的点上点式动作

Point-pushing actions for manifolds with boundary

论文作者

Palmer, Martin, Tillmann, Ulrike

论文摘要

给定一个歧管$ m $和内部点的点,点式绘制地图描述了沿封闭路径推动点的差异形态。这将$ m $基本组的同态分别定义为固定底线的$ m $的同位素类别类别。该地图在尺寸上进行了充分研究$ d = 2 $,并且是Birman精确序列的一部分。在这里,我们研究的是,对于任何$ d \ geqslant 3 $和$ k \ geqslant 1 $,从$ k $ th的$ m $组成的地图到$ k $ punctured compunduropt的歧管$ m \ m \ smallepsetminus z $的同型同质式等效的同型同型等价类别的地图。同等地,我们描述了通用捆绑包的单片,该单元将其与配置的$ z $相关联,$ k $ in $ m $,其补充,太空$ m \ smallsetminus z $。此外,由于我们在配置映射空间的同源性的工作中,我们描述了$ m $的编织组对配置映射空间纤维的作用。

Given a manifold $M$ and a point in its interior, the point-pushing map describes a diffeomorphism that pushes the point along a closed path. This defines a homomorphism from the fundamental group of $M$ to the group of isotopy classes of diffeomorphisms of $M$ that fix the basepoint. This map is well-studied in dimension $d = 2$ and is part of the Birman exact sequence. Here we study, for any $d \geqslant 3$ and $k \geqslant 1$, the map from the $k$-th braid group of $M$ to the group of homotopy classes of homotopy equivalences of the $k$-punctured manifold $M \smallsetminus z$, and analyse its injectivity. Equivalently, we describe the monodromy of the universal bundle that associates to a configuration $z$ of size $k$ in $M$ its complement, the space $M \smallsetminus z$. Furthermore, motivated by our work on the homology of configuration-mapping spaces, we describe the action of the braid group of $M$ on the fibres of configuration-mapping spaces.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源