论文标题
超级地球$π$ men c的轨道错位与恒星的旋转
Orbital misalignment of the super-Earth $π$ Men c with the spin of its star
论文作者
论文摘要
行星射线散射事件可以使行星迁移历史的可观察痕迹以轨道未对准的形式相对于恒星旋转轴,这是从传输过程中采用的光谱时间表来测量的。我们介绍了与近距离超级地球$π$ MEN c的浓缩咖啡观察到的高分辨率光谱过渡。该系统还在宽阔的怪异轨道上包含一个外部巨型行星,最近发现与内行星轨道相对于内部行星轨道。这些特征让人联想到过去的动态相互作用。我们在运输过程中成功检索了行星培养的光线,并找到证据表明,$π$ c的轨道与恒星自旋轴的轨道适度不一致,$λ= -24.0^\ circ \ circ \ circ \ circ pm 4.1^\ circ $($ circ $($ cocir)这与超级地球$π$ MEN C一致,后者遵循了高分子迁移,然后进行了潮汐循环化,并且暗示超级地球可以与恒星大距离形成。我们还检测到浓缩咖啡径向速度时间内的太阳能振荡的清晰签名,在那里我们达到$ {\ sim} 20 $ cm/s的径向速度精度。我们使用高斯进程对振荡进行建模,并检索最大振荡的频率,$ν_\ text {max} = 2771^{+65} _ { - 60} $ $ $ $ $ $ hz。这些振荡使得使用传统方法检测Rossiter-McLaughlin效应变得具有挑战性。但是,我们成功地使用了重新加载的Rossiter-McLaughlin方法。最后,在附录中,我们还提出了$π$ men c的更新的物理参数,并从整个苔丝周期1数据的高斯过程传输分析中介绍了$π$ men c。
Planet-planet scattering events can leave an observable trace of a planet's migration history in the form of orbital misalignment with respect to the the stellar spin axis, which is measurable from spectroscopic timeseries taken during transit. We present high-resolution spectroscopic transits observed with ESPRESSO of the close-in super-Earth $π$ Men c. The system also contains an outer giant planet on a wide, eccentric orbit, recently found to be inclined with respect to the inner planetary orbit. These characteristics are reminiscent of past dynamical interactions. We successfully retrieve the planet-occulted light during transit and find evidence that the orbit of $π$ Men c is moderately misaligned with the stellar spin axis with $λ= -24.0^\circ \pm 4.1^\circ$ ($ψ= 26.9^{\circ +5.8^\circ}_{\,-4.7^\circ}$). This is consistent with the super-Earth $π$ Men c having followed a high-eccentricity migration followed by tidal circularisation, and hints that super-Earths can form at large distances from their star. We also detect clear signatures of solar-like oscillations within our ESPRESSO radial velocity timeseries, where we reach a radial velocity precision of ${\sim}20$ cm/s. We model the oscillations using Gaussian processes and retrieve a frequency of maximum oscillation, $ν_\text{max} = 2771^{+65}_{-60}$ $μ$Hz. These oscillations makes it challenging to detect the Rossiter-McLaughlin effect using traditional methods. We are, however, successful using the reloaded Rossiter-McLaughlin approach. Finally, in an appendix we also present updated physical parameters and ephemerides for $π$ Men c from a Gaussian process transit analysis of the full TESS Cycle 1 data.