论文标题

粒子惯性对湍流云中小冰晶排列的影响

Effect of particle inertia on the alignment of small ice crystals in turbulent clouds

论文作者

Gustavsson, K., Sheikh, M. Z., Naso, A., Pumir, A., Mehlig, B.

论文摘要

在静止的流体中沉降的小型非球形颗粒往往会定向,以使其宽阔的侧面向下向下,因为这是其在小粒子雷诺数下的角动力学的稳定固定点。湍流在一定程度上随机随机方向,这会影响含有冰晶的湍流云中极化光的反射模式。一个过度阻尼的理论预测,当沉降编号SV(无量纲的沉降速度度量)很大时,湍流引起的方向波动很小。相比之下,在小SV处,过度阻尼理论预测湍流会随机方向。这种过度阻尼理论忽略了粒子惯性的影响。因此,我们在这里考虑粒子惯性如何影响沉降在湍流空气中的小晶体的方向。我们发现,即使Stokes Number ST(无量纲的粒子惯性度量)也很小,它也可以显着增加方向差异。我们确定不同的渐近参数状态,其中倾斜角度方差与SV的不同逆权力成正比。我们估计湍流云中冰晶的参数值,并表明它们涵盖了几个确定的方案。该理论预测对准程度如何取决于粒度,形状和湍流强度,并且只有在湍流能量耗散弱,$ 1 \,$ 1 \,$ cm $^2 $/s $^3 $或更少的订单时,小晶体的强水平对齐才有可能。

Small non-spherical particles settling in a quiescent fluid tend to orient so that their broad side faces down, because this is a stable fixed point of their angular dynamics at small particle Reynolds number. Turbulence randomises the orientations to some extent, and this affects the reflection patterns of polarised light from turbulent clouds containing ice crystals. An overdamped theory predicts that turbulence-induced fluctuations of the orientation are very small when the settling number Sv (a dimensionless measure of the settling speed) is large. At small Sv, by contrast, the overdamped theory predicts that turbulence randomises the orientations. This overdamped theory neglects the effect of particle inertia. Therefore we consider here how particle inertia affects the orientation of small crystals settling in turbulent air. We find that it can significantly increase the orientation variance, even when the Stokes number St (a dimensionless measure of particle inertia) is quite small. We identify different asymptotic parameter regimes where the tilt-angle variance is proportional to different inverse powers of Sv. We estimate parameter values for ice crystals in turbulent clouds and show that they cover several of the identified regimes. The theory predicts how the degree of alignment depends on particle size, shape and turbulence intensity, and that the strong horizontal alignment of small crystals is only possible when the turbulent energy dissipation is weak, of the order of $1\,$cm$^2$/s$^3$ or less.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源