论文标题

$ \ Mathcal {n} = 1 $ Einstein-Maxwell超级Gravity的对数校正对极端黑洞的熵

Logarithmic correction to the entropy of extremal black holes in $\mathcal{N}=1$ Einstein-Maxwell supergravity

论文作者

Banerjee, Gourav, Karan, Sudip, Panda, Binata

论文摘要

我们研究\ say {非最少耦合} $ \ Mathcal {n} = 1 $,$ d = 4 $ Einstein-Maxwell超级Graveity理论的单循环的有效动作。通过在经典背景周围波动,我们研究了在适当的时间内热核扩展的Seeley-Dewitt技术,Laplacian差异操作员的功能决定因素。然后,我们计算通过扩展获得的Seeley-Dewitt系数。特定的Seeley-Dewitt系数用于确定使用量子熵函数形式主义的极端黑洞的对数校正,以对对数校正。因此,我们在{\ say {noninimimally耦合}} $ \ Mathcal {n} = 1 $,$ d = 4 $ einstein-Maxwell Supergravity Choody中,确定了对Kerr-Newman,Kerr和Reissner-Nordström黑洞的熵的对数校正。

We study one-loop covariant effective action of \say{non-minimally coupled} $\mathcal{N}=1$, $d=4$ Einstein-Maxwell supergravity theory by heat kernel tool. By fluctuating the fields around the classical background, we study the functional determinant of Laplacian differential operator following Seeley-DeWitt technique of heat kernel expansion in proper time. We then compute the Seeley-DeWitt coefficients obtained through the expansion. A particular Seeley-DeWitt coefficient is used for determining the logarithmic correction to Bekenstein-Hawking entropy of extremal black holes using quantum entropy function formalism. We thus determine the logarithmic correction to the entropy of Kerr-Newman, Kerr and Reissner-Nordström black holes in {\say{non-minimally coupled}} $\mathcal{N}=1$, $d=4$ Einstein-Maxwell supergravity theory.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源