论文标题

树状图及其稳定性的合并图

The mergegram of a dendrogram and its stability

论文作者

Elkin, Yury, Kurlin, Vitaliy

论文摘要

本文将持久性的关键概念扩展在拓扑数据分析(TDA)中,朝着新的方向扩展。 TDA量化了隐藏在无组织数据中的拓扑形状,例如无序点的云。在0维情况下,基于距离的持久性是由公制空间中有限设置的单个链接(SL)聚类确定的。同等地,0D持久性仅捕获最小跨越树(MST)的边缘长度。在点的扰动下,SL模拟图和MST都是不稳定的。我们定义了新的稳定噪声合并,它在persay对点云的分类上胜过先前的等轴测图。

This paper extends the key concept of persistence within Topological Data Analysis (TDA) in a new direction. TDA quantifies topological shapes hidden in unorganized data such as clouds of unordered points. In the 0-dimensional case the distance-based persistence is determined by a single-linkage (SL) clustering of a finite set in a metric space. Equivalently, the 0D persistence captures only edge-lengths of a Minimum Spanning Tree (MST). Both SL dendrogram and MST are unstable under perturbations of points. We define the new stable-under-noise mergegram, which outperforms previous isometry invariants on a classification of point clouds by PersLay.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源