论文标题

从分子离子编码的从梅加赫兹到terahertz量子:n $ \ mathbf {_2^+} $中偶极子 - 弗孔光谱过渡的理论分析

From megahertz to terahertz qubits encoded in molecular ions: theoretical analysis of dipole-forbidden spectroscopic transitions in N$\mathbf{_2^+}$

论文作者

Najafian, Kaveh, Meir, Ziv, Willitsch, Stefan

论文摘要

量子技术的最新进展已使量子水平上的单个捕获分子的精确控制。在探索这些新技术的范围时,我们从理论上研究了旋转,旋转和振动振动自由度中分子氮离子自由度的实现,包括磁场的影响。相关的光谱过渡范围跨越了六个数量级,以说明用于编码量子信息的分子光谱的多功能性。我们鉴定了两种类型的磁性量子位,具有非常低的(“拉伸” - 状态码头),甚至零(“魔术”磁场Qubits)线性zeeman偏移。预计相应的光谱过渡将在几个mg的速度上移动至少几个MHz,以使磁场波动振幅转移到几十分钟的旋转和振动中编码的数十分钟的Zeeman限制相干时间。我们还发现,基本振动过渡的Q(0)线是通过与分子的第一个激发电子状态相互作用允许的磁性偶极。到目前为止,Q(0)的转变受益于时钟操作的小型系统偏移以及对质子与电子质量比的可能变化的高灵敏度,但在单光子光谱中尚未考虑。最后,我们探讨了通过磁旋转状态的磁混合而连贯控制N $ _2^+$的核旋转构型的可能性。

Recent advances in quantum technologies have enabled the precise control of single trapped molecules on the quantum level. Exploring the scope of these new technologies, we studied theoretically the implementation of qubits and clock transitions in the spin, rotational, and vibrational degrees of freedom of molecular nitrogen ions including the effects of magnetic fields. The relevant spectroscopic transitions span six orders of magnitude in frequency illustrating the versatility of the molecular spectrum for encoding quantum information. We identified two types of magnetically insensitive qubits with very low ("stretched"-state qubits) or even zero ("magic" magnetic-field qubits) linear Zeeman shifts. The corresponding spectroscopic transitions are predicted to shift by as little as a few mHz for an amplitude of magnetic-field fluctuations on the order of a few mG translating into Zeeman-limited coherence times of tens of minutes encoded in the rotations and vibrations of the molecule. We also found that the Q(0) line of the fundamental vibrational transition is magnetic-dipole allowed by interaction with the first excited electronic state of the molecule. The Q(0) transitions, which benefit from small systematic shifts for clock operation and high sensitivity to a possible variation in the proton-to-electron mass ratio, were so far not considered in single-photon spectra. Finally, we explored possibilities to coherently control the nuclear-spin configuration of N$_2^+$ through the magnetically enhanced mixing of nuclear-spin states.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源