论文标题

通过近红外的前向模型技术测量精确的径向速度测量

Precision radial velocity measurements by the forward-modeling technique in the near-infrared

论文作者

Hirano, Teruyuki, Kuzuhara, Masayuki, Kotani, Takayuki, Omiya, Masashi, Kudo, Tomoyuki, Harakawa, Hiroki, Vievard, Sébastien, Kurokawa, Takashi, Nishikawa, Jun, Tamura, Motohide, Hodapp, Klaus, Ishizuka, Masato, Jacobson, Shane, Konishi, Mihoko, Serizawa, Takuma, Ueda, Akitoshi, Gaidos, Eric, Sato, Bun'ei

论文摘要

近红外的精确径向速度(RV)测量值是检测和表征具有较高磁性活性的低质量恒星或年轻恒星周围外球星的强大工具。然而,在近红外的情况下,存在强大的牙槽吸收线和发射线的存在,即随着时间的流逝有明显变化,可以通过经典技术从这些光谱中提取RV信息,而经典技术忽略或掩盖了牙槽线。我们提出了一种方法和管道,可以使用前向模型技术从近红外光谱中得出精确的RV。我们将其应用于宽波长覆盖范围(同时由Subaru 8.2 m望远镜上的红外多普勒(IRD)光谱仪采集的光谱(同时)。我们的管道基于激光频率梳子的参考光谱,将光谱仪的瞬时仪器曲线提取,该光谱与恒星光同时注入光谱仪。这些轮廓用于得出固有的恒星模板频谱,该模板频谱没有仪器的扩展和矫尿特征,以及在RV分析中观察到的模型和拟合个人观察到的光谱。使用模仿IRD数据的理论谱实现一系列数值模拟,我们测试了管道,并表明IRD可以实现$ <2 $ m s $^{ - 1} $精度,用于缓慢旋转中高旋转的M矮人,其信号到噪声比率$> 100 $> 100 $> 100 $> 100 $> 100 nm。 RV精度对各种恒星参数的依赖性(例如,$ t _ {\ rm eff} $,$ v \ sin i $,[fe/h]),以及通过模拟光谱分析讨论了Telluric-Line混合物对RV准确性的影响。我们还将RV分析管道应用于GJ 699和Trappist-1的观察到的光谱,这表明光谱仪和管道能够至少在几个月的时间范围内具有$ <3 $ m s $ s $ s $ s $ s $^{ - 1} $的RV精度。

Precision radial velocity (RV) measurements in the near-infrared are a powerful tool to detect and characterize exoplanets around low-mass stars or young stars with higher magnetic activity. However, the presence of strong telluric absorption lines and emission lines in the near infrared that significantly vary in time can prevent extraction of RV information from these spectra by classical techniques, which ignore or mask the telluric lines. We present a methodology and pipeline to derive precision RVs from near-infrared spectra using a forward-modeling technique. We applied this to spectra with a wide wavelength coverage (Y, J, and H bands, simultaneously), taken by the InfraRed Doppler (IRD) spectrograph on the Subaru 8.2-m telescope. Our pipeline extracts the instantaneous instrumental profile of the spectrograph for each spectral segment, based on a reference spectrum of the laser-frequency comb that is injected into the spectrograph simultaneously with the stellar light. These profiles are used to derive the intrinsic stellar template spectrum, which is free from instrumental broadening and telluric features, as well as model and fit individual observed spectra in the RV analysis. Implementing a series of numerical simulations using theoretical spectra that mimic IRD data, we test the pipeline and show that IRD can achieve $<2$ m s$^{-1}$ precision for slowly rotating mid-to-late M dwarfs with a signal-to-noise ratio $> 100$ per pixel at 1000 nm. Dependences of RV precision on various stellar parameters (e.g., $T_{\rm eff}$, $v\sin i$, [Fe/H]) and the impact of telluric-line blendings on the RV accuracy are discussed through the mock spectra analyses. We also apply the RV-analysis pipeline to the observed spectra of GJ 699 and TRAPPIST-1, demonstrating that the spectrograph and the pipeline are capable of an RV accuracy of $<3$ m s$^{-1}$ at least on a time scale of a few months.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源