论文标题

Fisher和Kolmogorov,Petrovskii和Piskunov波的随机方法,用于稀释和浓缩溶液中不同扩散性的物种

Stochastic approach to Fisher and Kolmogorov, Petrovskii, and Piskunov wave fronts for species with different diffusivities in dilute and concentrated solutions

论文作者

Morgado, Gabriel, Nowakowski, Bogdan, Lemarchand, Annie

论文摘要

Fisher和Kolmogorov,Petrovskii和Piskunov类型的波动局部涉及两种具有不同扩散系数的物种A和B,$ d_a $和$ d_b $是使用稀释和浓缩溶液中的主方程方法研究的。物种A和B应该参与自催化反应A+B-> 2a。与确定性描述的结果相反,稀释案例中从主方程中得出的前速敏感地取决于物种B的扩散系数B。对确定性方程的线性分析,在反应术语中截止截止,无法解释$ d_b> d_a> d_a $的前速下降。在集中溶液的情况下,与交叉扩散相关的过渡速率源自相应的扩散通量。在稀释案例中获得的波前的特性仍然有效,但通过交叉扩散来减轻不同扩散系数的影响。

A wave front of Fisher and Kolmogorov, Petrovskii, and Piskunov type involving two species A and B with different diffusion coefficients $D_A$ and $D_B$ is studied using a master equation approach in dilute and concentrated solutions. Species A and B are supposed to be engaged in the autocatalytic reaction A+B -> 2A. Contrary to the results of a deterministic description, the front speed deduced from the master equation in the dilute case sensitively depends on the diffusion coefficient of species B. A linear analysis of the deterministic equations with a cutoff in the reactive term cannot explain the decrease of the front speed observed for $D_B > D_A$. In the case of a concentrated solution, the transition rates associated with cross-diffusion are derived from the corresponding diffusion fluxes. The properties of the wave front obtained in the dilute case remain valid but are mitigated by cross-diffusion which reduces the impact of different diffusion coefficients.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源