论文标题
来自光子雪崩纳米颗粒的巨型非线性光学响应
Giant nonlinear optical responses from photon avalanching nanoparticles
论文作者
论文摘要
雪崩现象利用陡峭的非线性动力学来产生微小扰动的不成比例的高反应,并在多种事件和材料中发现,使技术能够在包括光学相结合成像,红外量子计数以及有效的上调激光的技术中。但是,仅在散装材料和聚集体中观察到这些光学创新的基础的光子雪崩(PA)机制,通常在低温温度下,限制了其效用和影响。在这里,我们报告了在室温下在单纳米结构中实现PA的实现 - 微型,TM掺杂的上转换纳米晶体 - 并在最大生物学透明度的光谱窗口中证明了它们在近红外(NIR)波长的超分辨率成像中的使用。雪崩纳米颗粒(ANP)可以通过连续波或脉冲激光泵泵,并展示PA的所有定义特征。这些标志包括激发功率阈值,阈值长时间的上升时间以及优于地面吸收大于13,000倍的兴奋状态吸收。除了雪崩阈值之外,ANP发射以26次泵强度的功率非线性缩放。这可以实现光子 - 阿瓦兰奇单光束上线分辨率成像(PASSI),仅使用简单的扫描共聚焦显微镜和任何计算分析之前就可以实现70 nm的空间分辨率。 ANP将其陡峭的非线性与现有的超分辨率技术和计算方法配对,允许以更高的分辨率和CA进行成像。与其他探针相比,激发强度低100倍。 ANP的低PA阈值和特殊的光稳定性还表明它们在各种应用中的效用,包括亚波长生物成像,IR检测,温度和压力转导,神经态计算和量子光学器件。
Avalanche phenomena leverage steeply nonlinear dynamics to generate disproportionately high responses from small perturbations and are found in a multitude of events and materials, enabling technologies including optical phase-conjugate imaging, infrared quantum counting, and efficient upconverted lasing. However, the photon avalanching (PA) mechanism underlying these optical innovations has been observed only in bulk materials and aggregates, and typically at cryogenic temperatures, limiting its utility and impact. Here, we report the realization of PA at room temperature in single nanostructures--small, Tm-doped upconverting nanocrystals--and demonstrate their use in superresolution imaging at near-infrared (NIR) wavelengths within spectral windows of maximal biological transparency. Avalanching nanoparticles (ANPs) can be pumped by continuous-wave or pulsed lasers and exhibit all of the defining features of PA. These hallmarks include excitation power thresholds, long rise time at threshold, and a dominant excited-state absorption that is >13,000x larger than ground-state absorption. Beyond the avalanching threshold, ANP emission scales nonlinearly with the 26th power of pump intensity. This enables the realization of photon-avalanche single-beam superresolution imaging (PASSI), achieving sub-70 nm spatial resolution using only simple scanning confocal microscopy and before any computational analysis. Pairing their steep nonlinearity with existing superresolution techniques and computational methods, ANPs allow for imaging with higher resolution and at ca. 100-fold lower excitation intensities than is possible with other probes. The low PA threshold and exceptional photostability of ANPs also suggest their utility in a diverse array of applications including sub-wavelength bioimaging, IR detection, temperature and pressure transduction, neuromorphic computing, and quantum optics.