论文标题
pslg的非抗突
Nonobtuse triangulations of PSLGs
论文作者
论文摘要
我们表明,任何具有$ n $顶点的平面直线图(PSLG)都有$ O(n^{2.5})$ o(n^{2.5})$ nonobtuse triangles(所有角度$ \ leq 90^\ circ $)的三角剖分,回答了是否存在任何多项式边界的问题。非观察三角剖分是Delaunay,因此该结果还改善了Eldesbrunner和TAN的前面$ O(n^3)$,用于符合PSLG的Delaunay三角剖分。在PSLG是简单多边形的三角剖分的特殊情况下,我们将证明只需要$ O(n^2)$三角形,改善了$ O(n^4)$ bound of Bern and Eppstein。我们还表明,对于任何$ε> 0 $,每个PSLG都有一个与$ O(n^2/ε^2)$元素的三角剖分,并且所有角度都在上面的所有角度限制为$ 90^\ Circ +ε$。当$ε=3π/8 = 67.5^\ circ $和tan时,这改善了S. Mitchell的结果。
We show that any planar straight line graph (PSLG) with $n$ vertices has a conforming triangulation by $O(n^{2.5})$ nonobtuse triangles (all angles $\leq 90^\circ$), answering the question of whether any polynomial bound exists. A nonobtuse triangulation is Delaunay, so this result also improves a previous $O(n^3)$ bound of Eldesbrunner and Tan for conforming Delaunay triangulations of PSLGs. In the special case that the PSLG is the triangulation of a simple polygon, we will show that only $O(n^2)$ triangles are needed, improving an $O(n^4)$ bound of Bern and Eppstein. We also show that for any $ε>0$, every PSLG has a conforming triangulation with $O(n^2/ε^2)$ elements and with all angles bounded above by $90^\circ + ε$. This improves a result of S. Mitchell when $ε= 3 π/8 = 67.5^\circ $ and Tan when $ε= 7π/30 =42^\circ$.