论文标题

液体蒸气共存系统具有多体耗散粒子动力学的温度依赖性特性,并保存能量

Temperature-dependent properties of liquid-vapour coexistence system with many-body dissipative particle dynamics with energy conservation

论文作者

Zhang, Kaixuan, Li, Jie, Chen, Shuo, Liu, Yang

论文摘要

流体的动态特性,包括密度,表面张力,扩散性和粘度,是温度依赖性的,可以显着影响介质非等温系统的流动动力学。为了捕获流体的正确温度依赖性,通过结合保守力的温度依赖系数以及耗散力和随机力的加权项来开发具有能量保护(MDPDE)的多体耗散粒子动力学模型(MDPDE)。在各种温度下,液体水的动量和热扩散率,粘度和表面张力范围为273 K至373 K,用作验证所提出的模型的示例。进行了由身体力和热源驱动的周期性POISEUILE流的模拟,以验证本模型的扩散率。同样,用于再现傅立叶定律的稳定的热传导案例用于验证热边界条件。通过使用此MDPDE模拟,研究了用热梯度在疏水性底物上液体水纳米体的热毛细血管运动。在梯度温度的平坦底物上观察到液滴的迁移。对于较高的温度差,迁移的速度变得更大,这与当前的理论分析和DVDWT模拟一致。结果表明,修改模型可用于研究Marangoni对纳米圆形和其他热界面问题的影响。

The dynamic properties of fluid, including density, surface tension, diffusivity and viscosity, are temperature-dependent and can significantly influence the flow dynamics of mesoscopic non-isothermal systems. To capture the correct temperature-dependence of a fluid, a many-body dissipative particle dynamics model with energy conservation (mDPDe) is developed by combining the temperature-dependent coefficient of the conservative force and weighting terms of the dissipative and random forces. The momentum and thermal diffusivity, viscosity, and surface tension of liquid water at various temperatures ranging from 273 K to 373 K are used as examples for verifying the proposed model. Simulations of a periodic Poiseuille flow driven by body forces and heat sources are carried out to validate the diffusivity of the present model. Also, a steady case of heat conduction for reproducing the Fourier law is used to validate the thermal boundary conditions. By using this mDPDe simulations, the thermocapillary motion of liquid water nanodroplets on hydrophobic substrates with thermal gradients is investigated. The migration of the droplet is observed on flat substrates with gradient temperature. The velocity of the migration becomes larger for higher temperature difference, which is in agreement with the present theoretical analysis and DVDWT simulations. The results illustrate that the modified model can be used to study Marangoni effect on a nanodroplet and other heat and mass transfer problems with free interface.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源