论文标题
部分标签的自相似学生组织病理学图像细分
Self-similarity Student for Partial Label Histopathology Image Segmentation
论文作者
论文摘要
千兆像素全滑道图像(WSIS)中癌变区域的描述是数字病理学中至关重要的诊断程序。由于Gigapixel WSIS中的较大搜索空间,此过程很耗时,导致在不明显的肿瘤病变时遗漏和误解的机会。为了解决这个问题,必须开发自动癌区域分割方法。我们将此问题框起来是部分标签WSI的建模问题,其中一些癌变区域可能被错误地分类为良性,反之亦然,产生带有嘈杂标签的斑块。要从这些补丁中学习,我们建议自相似的学生,将教师学生模型范式与相似性学习相结合。具体而言,对于每个贴片,我们首先根据空间距离对其相似和不同的贴片进行采样。然后引入了教师学生模型,其中包括学生模型权重和教师预测合奏的指数移动平均值。虽然我们的学生模型采用补丁,但教师模型采用了所有相应的相似和不同的补丁,以学习与嘈杂标签补丁的强大表示形式。遵循这种相似性学习,我们的相似性合奏将相似的贴片的结合预测合并为给定贴片的伪标签,以抵消其嘈杂的标签。在CamelyOn16数据集上,我们的方法在不同程度的噪声中,我们的方法显着优于5 $ \%$的最先进的噪音吸引学习方法,而受监督的基线则优于10 $ \%$。此外,我们的方法优于我们的TVGH TURP数据集中的基线,并改进了2美元,这表明了对更临床的组织病理学细分任务的普遍性。
Delineation of cancerous regions in gigapixel whole slide images (WSIs) is a crucial diagnostic procedure in digital pathology. This process is time-consuming because of the large search space in the gigapixel WSIs, causing chances of omission and misinterpretation at indistinct tumor lesions. To tackle this, the development of an automated cancerous region segmentation method is imperative. We frame this issue as a modeling problem with partial label WSIs, where some cancerous regions may be misclassified as benign and vice versa, producing patches with noisy labels. To learn from these patches, we propose Self-similarity Student, combining teacher-student model paradigm with similarity learning. Specifically, for each patch, we first sample its similar and dissimilar patches according to spatial distance. A teacher-student model is then introduced, featuring the exponential moving average on both student model weights and teacher predictions ensemble. While our student model takes patches, teacher model takes all their corresponding similar and dissimilar patches for learning robust representation against noisy label patches. Following this similarity learning, our similarity ensemble merges similar patches' ensembled predictions as the pseudo-label of a given patch to counteract its noisy label. On the CAMELYON16 dataset, our method substantially outperforms state-of-the-art noise-aware learning methods by 5$\%$ and the supervised-trained baseline by 10$\%$ in various degrees of noise. Moreover, our method is superior to the baseline on our TVGH TURP dataset with 2$\%$ improvement, demonstrating the generalizability to more clinical histopathology segmentation tasks.