论文标题

左HOPF左双方的整体理论

Integral theory for left Hopf left bialgebroids

论文作者

Chemla, Sophie

论文摘要

我们研究了左(或右)Hopf左双方的积分理论。与HOPF代数相反,后者没有必要的antipode $ s $,但对于任何元素$ u $,元素$ u _ {(1)} \ otimes s(u _ {(2)})$(或$ u _ {(2)} {(2)} \ otimimess s^{ - 1} $}我们的结果扩展了研究Hopf代数综合理论的G.Böhm的结果。我们利用有关左HOPF左双晶型物的最新结果。我们将结果应用于受限制的rinehart代数的限制包围代数。

We study integral theory for left (or right) Hopf left bialgebroids. Contrary to Hopf algebroids, the latter ones don't necessary have an antipode $S$ but, for any element $u$, the elements $u_{(1)} \otimes S(u_{(2)})$ (or $u_{(2)}\otimes S^{-1}(u_{(1)})$ ) does exist. Our results extend those of G. Böhm who studied integral theory for Hopf algebroids. We make use of recent results about left Hopf left bialgebroids. We apply our results to the restricted enveloping algebra of a restricted Lie Rinehart algebra.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源