论文标题

一致的注释较弱

A Note on Congruences for Weakly Holomorphic Modular Forms

论文作者

Dembner, Spencer, Jain, Vanshika

论文摘要

令$ o_l $为数字字段$ l $的整数环。写入$ q = e^{2πiz} $,并假设$$ f(z)= \ sum_ {n \ gg- \ gg - \ infty}^{\ infty} a_f(n)q^n \ in m_ {k} o_l [[q]] $$是一种弱的全态模块化形式,均为$ k \ leq 2 $。我们通过证明$ p \ geq 5 $为prime,而$ 2-k = r(p-1) + 2 p^t $对于某些$ r \ geq 0 $和$ t> 0 $,则回答一个Ono的问题,然后$ A_F(p^t)\ equiv 0 \ pmod p $。对于$ p = 2,3,$我们显示出相同的结果,条件是$ 2 -k -2 p^t $均匀且至少$ 4 $。这代表了Jin,MA和Ono证明的定理的“缺失案例”。

Let $O_L$ be the ring of integers of a number field $L$. Write $q = e^{2 πi z}$, and suppose that $$f(z) = \sum_{n \gg - \infty}^{\infty} a_f(n) q^n \in M_{k}^{!}(\operatorname{SL}_2(\mathbb{Z})) \cap O_L[[q]]$$ is a weakly holomorphic modular form of even weight $k \leq 2$. We answer a question of Ono by showing that if $p \geq 5$ is prime and $ 2-k = r(p-1) + 2 p^t$ for some $r \geq 0$ and $t > 0$, then $a_f(p^t) \equiv 0 \pmod p$. For $p = 2,3,$ we show the same result, under the condition that $2 - k - 2 p^t$ is even and at least $4$. This represents the "missing case" of a theorem proved by Jin, Ma, and Ono.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源