论文标题
无多重键多项式
Multiplicity-free key polynomials
论文作者
论文摘要
由A. lascoux-M.-p定义的关键多项式。 Schützenberger是A类型的扎唑模块的字符。我们对无多重键多项式进行了分类。该证明使用两个组合模型作为关键多项式。首先是由于A. Kohnert造成的。第二个是S. Assaf-D。 Searles,就准键多项式而言。我们的论点证明了准键多项式的足够条件,使得不含多重性。
The key polynomials, defined by A. Lascoux-M.-P. Schützenberger, are characters for the Demazure modules of type A. We classify multiplicity-free key polynomials. The proof uses two combinatorial models for key polynomials. The first is due to A. Kohnert. The second is by S. Assaf-D. Searles, in terms of quasi-key polynomials. Our argument proves a sufficient condition for a quasi-key polynomial to be multiplicity-free.