论文标题
直接测量SI/SIGE量子点中电子间隔放松
Direct measurement of electron intervalley relaxation in a Si/SiGe quantum dot
论文作者
论文摘要
在硅中的非脱位山谷状态的存在会严重影响基于硅的异质结构中的电子动力学,从而导致电子自旋松弛和自旋 - 瓦利耦合。在固态自旋量子尺的背景下,重要的是要了解自旋和山谷自由度之间的相互作用,以避免或减轻这些脱碳机制。在这里,我们报告了在零磁场处的Si/Sige量子点中从激发谷状态到基态的弛豫观察。山谷状态读出的辅助依赖于山谷的隧道效应,我们将其归因于山谷 - 轨道耦合。我们发现长时间的休闲时间为12.0 $ \ pm $ 0.3毫秒,当应用磁场时,该值未修改。此外,我们将我们的发现与自旋松弛时间进行了比较,并发现自旋谷“热点”放松比Intertectley放松的速度慢了大约四倍,这与已建立的理论预测一致。该技术的精度是通过电子旋转通过能量依赖性隧道读出的,是对间接山谷弛豫测量值的改进,并且可能是对旋转和山谷Qubit实施中山谷物理学的有用探针。
The presence of non-degenerate valley states in silicon can drastically affect electron dynamics in silicon-based heterostructures, leading to electron spin relaxation and spin-valley coupling. In the context of solid-state spin qubits, it is important to understand the interplay between spin and valley degrees of freedom to avoid or alleviate these decoherence mechanisms. Here we report the observation of relaxation from the excited valley state to the ground state in a Si/SiGe quantum dot, at zero magnetic field. Valley state read-out is aided by a valley-dependent tunneling effect, which we attribute to valley-orbit coupling. We find a long intervalley relaxation time of 12.0 $\pm$ 0.3 ms, a value that is unmodified when a magnetic field is applied. Furthermore, we compare our findings with the spin relaxation time and find that the spin-valley "hot spot" relaxation is roughly four times slower than intervalley relaxation, consistent with established theoretical predictions. The precision of this technique, adapted from electron spin read-out via energy-dependent tunneling, is an improvement over indirect valley relaxation measurements and could be a useful probe of valley physics in spin and valley qubit implementations.