论文标题
非弗米液体作为Ersatz Fermi液体:可压缩金属的一般约束
Non-Fermi liquids as ersatz Fermi liquids: general constraints on compressible metals
论文作者
论文摘要
具有电荷保护和晶格翻译对称性的系统具有明确定义的填充$ν$,这是代表每个单位单元平均电荷的实数。我们表明,如果$ν$是分数的(即不是整数),那么这对系统的低能理论施加了非常强大的限制,并提供了一个框架来理解巨大的常规性,大大推广了Luttinger和Lieb-Schultz-Mattis定理。如果$ν$连续可调(即系统是电荷可压缩的),则最有力的约束是出现的,在这种情况下,我们表明低能能理论必须具有一个非常大的新兴对称组 - 比任何紧凑的谎言组都大。一个例子是费米液体的费米表面,其中费米表面的每个点的电荷都得到保守。我们希望,在许多情况下,即使不是全部的情况,即使是异国情调的非Fermi液体也将具有与费米液体相同的新兴对称组,即使它们可能具有非常不同的动态。我们将该属性的系统称为“ Ersatz Fermi液体”。我们表明,Ersatz Fermi液体与费米液体具有许多共同的特性,包括Luttinger的定理(因此扩展到大型的非Fermi液体)和对施加磁场的响应中的周期性“量子振荡”。我们还建立了量子霍尔系统中复合费米液体的Luttinger定理的版本和Mott绝缘子中的Spinon Fermi表面的版本。我们的工作使填充约束与对称性保护拓扑(SPT)阶段之间的联系,尤其是通过“ T Hooft异常”的概念。
A system with charge conservation and lattice translation symmetry has a well-defined filling $ν$, which is a real number representing the average charge per unit cell. We show that if $ν$ is fractional (i.e. not an integer), this imposes very strong constraints on the low-energy theory of the system and give a framework to understand such constraints in great generality, vastly generalizing the Luttinger and Lieb-Schultz-Mattis theorems. The most powerful constraint comes about if $ν$ is continuously tunable (i.e. the system is charge-compressible), in which case we show that the low-energy theory must have a very large emergent symmetry group -- larger than any compact Lie group. An example is the Fermi surface of a Fermi liquid, where the charge at every point on the Fermi surface is conserved. We expect that in many, if not all, cases, even exotic non-Fermi liquids will have the same emergent symmetry group as a Fermi liquid, even though they could have very different dynamics. We call a system with this property an "ersatz Fermi liquid". We show that ersatz Fermi liquids share a number of properties in common with Fermi liquids, including Luttinger's theorem (which is thus extended to a large class of non-Fermi liquids) and periodic "quantum oscillations" in the response to an applied magnetic field. We also establish versions of Luttinger's theorem for the composite Fermi liquid in quantum Hall systems and for spinon Fermi surfaces in Mott insulators. Our work makes connection between filling constraints and the theory of symmetry-protected topological (SPT) phases, in particular through the concept of " 't Hooft anomalies".