论文标题
简化的离散统一气体动力学方案,用于不可压缩流
A simplified discrete unified gas kinetic scheme for incompressible flow
论文作者
论文摘要
离散的统一气体动力学方案(DUGKS)是连续和稀有流的新有限体积(FV)方案,结合了晶格玻尔兹曼方法(LBM)和统一的气体动力学方案(UGK)的好处。通过使用粒子速度特征线重建气体分布函数,通量包含更详细的流体流和更具体的物理性质信息。在这项工作中,提出了一个简化的dugks,并在整个时间步骤中使用重建阶段,而不是在原始的Dugks中进行半个时间步骤。使用时间/空间积分Boltzmann Bhatnagar-krook(BGK)方程,构建了带有碰撞效应的转换分布函数。下次步骤的细胞的宏观和介观通量通过沿粒子速度特征线的接口上转换的分布函数的重建来预测。根据《保护定律》,可以通过其宏观通量更新下一步的细胞的宏观变量。下一个时间步骤上的平衡分布功能也可以更新。 FV方案通过其预测的介质通量在时间步骤中通过FV方案更新气体分布函数。与原始的dugks相比,由于省略半个时间步长计算,该方法的计算过程更加简洁。数值时间步骤仅受Courant-Friedrichs-Lewy(CFL)条件的限制,并且已经保留了相对良好的稳定性。进行了几个测试用例,包括couette流动,盖子驱动的腔流,层流在平板上流过,圆形圆柱和机翼以及微腔流量箱以验证当前的方案。数值模拟结果与参考结果的结果非常吻合。
The discrete unified gas kinetic scheme (DUGKS) is a new finite volume (FV) scheme for continuum and rarefied flows which combines the benefits of both Lattice Boltzmann Method (LBM) and unified gas kinetic scheme (UGKS). By reconstruction of gas distribution function using particle velocity characteristic line, flux contains more detailed information of fluid flow and more concrete physical nature. In this work, a simplified DUGKS is proposed with reconstruction stage on a whole time step instead of half time step in original DUGKS. Using temporal/spatial integral Boltzmann Bhatnagar-Gross-Krook (BGK) equation, the transformed distribution function with inclusion of collision effect is constructed. The macro and mesoscopic fluxes of the cell on next time step is predicted by reconstruction of transformed distribution function at interfaces along particle velocity characteristic lines. According to the conservation law, the macroscopic variables of the cell on next time step can be updated through its macroscopic flux. Equilibrium distribution function on next time step can also be updated. Gas distribution function is updated by FV scheme through its predicted mesoscopic flux in a time step. Compared with the original DUGKS, the computational process of the proposed method is more concise because of the omission of half time step flux calculation. Numerical time step is only limited by the Courant-Friedrichs-Lewy (CFL) condition and relatively good stability has been preserved. Several test cases, including the Couette flow, lid-driven cavity flow, laminar flows over a flat plate, a circular cylinder, and an airfoil, as well as micro cavity flow cases are conducted to validate present scheme. The numerical simulation results agree well with the references' results.