论文标题
模仿爱因斯坦 - 卡丹 - 凯巴尔 - 塞米亚(ECKS)重力
Mimetic Einstein-Cartan-Kibble-Sciama (ECKS) gravity
论文作者
论文摘要
在本文中,我们以差异形式的一阶形式主义(即爱因斯坦 - 卡丹 - 凯伯布尔 - 塞米亚(ECKS)重力的模仿形式)制定了模仿重力理论。我们考虑了关于扭转如何受共形转换影响的不同可能性,并讨论了这如何转化为旋转连接的两个不同的共形变换之间的插值,并用零形式的参数$λ$进行参数化。我们证明,无论人们选择的转换类型如何,在这种情况下,扭转仍然是一个非传播领域。我们还讨论了模拟应力 - 能量张量的保存,并表明总应力 - 能量张量的痕迹不是无效,而是取决于$λ$和时空扭转的值。
In this paper, we formulate the Mimetic theory of gravity in first-order formalism for differential forms, i.e., the mimetic version of Einstein-Cartan-Kibble-Sciama (ECKS) gravity. We consider different possibilities on how torsion is affected by conformal transformations and discuss how this translates into the interpolation between two different conformal transformations of the spin connection, parameterized with a zero-form parameter $λ$. We prove that regardless of the type of transformation one chooses, in this setting torsion remains as a non-propagating field. We also discuss the conservation of the mimetic stress-energy tensor and show that the trace of the total stress-energy tensor is not null but depends on both, the value of $λ$ and spacetime torsion.