论文标题
通过CPU-GPU异质计算,用于联合边缘学习的节能资源管理
Energy-Efficient Resource Management for Federated Edge Learning with CPU-GPU Heterogeneous Computing
论文作者
论文摘要
边缘机器学习涉及在网络边缘部署学习算法,以利用大量的分布式数据和计算资源来培训人工智能(AI)模型。除其他外,联合边缘学习(Feel)的框架因其数据私人保护而受欢迎。在边缘服务器和通过无线链接连接的边缘设备上的Edge Server和本地模型培训进行全局模型培训。这项工作通过设计联合计算和通信资源管理($ \ text {c}^2 $ rm)来有助于无线网络中的节能实现。该设计针对最先进的异质移动体系结构,其中使用CPU和GPU(称为异质计算)并行计算可以显着提高性能和能源效率。为了最大程度地减少设备的总和消耗,我们提出了一个新颖的$ \ text {c}^2 $ rm框架,具有多维控制,包括带宽分配,CPU-GPU工作负载分区和每个设备的速度缩放,以及$ \ text {C} {C}^2 $ time disection for venter {c}^2 $。框架的关键组成部分是相对于不同控制变量的能量速率的一组平衡,这些变量被证明存在于设备之间或每个设备的处理单元之间。结果应用于设计有效算法,用于计算最佳$ \ text {c}^2 $ rm策略比标准优化工具快。基于平衡,我们进一步设计了用于设备调度和贪婪的光谱共享的节能方案,该方案是由异质$ \ text {c}^2 $时间分隔在设备之间引起的“光谱孔”。使用真实的数据集,进行了实验,以证明$ \ text {c}^2 $ rm在提高感觉系统能源效率方面的有效性。
Edge machine learning involves the deployment of learning algorithms at the network edge to leverage massive distributed data and computation resources to train artificial intelligence (AI) models. Among others, the framework of federated edge learning (FEEL) is popular for its data-privacy preservation. FEEL coordinates global model training at an edge server and local model training at edge devices that are connected by wireless links. This work contributes to the energy-efficient implementation of FEEL in wireless networks by designing joint computation-and-communication resource management ($\text{C}^2$RM). The design targets the state-of-the-art heterogeneous mobile architecture where parallel computing using both a CPU and a GPU, called heterogeneous computing, can significantly improve both the performance and energy efficiency. To minimize the sum energy consumption of devices, we propose a novel $\text{C}^2$RM framework featuring multi-dimensional control including bandwidth allocation, CPU-GPU workload partitioning and speed scaling at each device, and $\text{C}^2$ time division for each link. The key component of the framework is a set of equilibriums in energy rates with respect to different control variables that are proved to exist among devices or between processing units at each device. The results are applied to designing efficient algorithms for computing the optimal $\text{C}^2$RM policies faster than the standard optimization tools. Based on the equilibriums, we further design energy-efficient schemes for device scheduling and greedy spectrum sharing that scavenges "spectrum holes" resulting from heterogeneous $\text{C}^2$ time divisions among devices. Using a real dataset, experiments are conducted to demonstrate the effectiveness of $\text{C}^2$RM on improving the energy efficiency of a FEEL system.