论文标题
SU(3)量规理论的粘合球光谱3+1维度
The glueball spectrum of SU(3) gauge theory in 3+1 dimension
论文作者
论文摘要
我们使用标准的Plaquette Action计算了SU(3)晶格量表理论的SU(3)晶格量表理论的低覆盖球谱。我们这样做是为Cutic旋转组的所有表示形式中的状态,以及均衡P和电荷共轭的两个值C,我们使用狭窄的弦乐张力将这些结果推断为理论的连续限制,作为我们的能量尺度。我们还以R0量表的单位介绍了结果,并以物理“ GEV”单元的形式提出了结果。对于这些状态,我们能够以很少的歧义来识别其连续旋转j。我们还计算了晶格量规场的拓扑电荷Q,以表明我们在整个Beta范围内都具有足够的牙齿性,并且我们计算了Q作为beta的函数的Q乘法重效率。我们还获得了SU(3)拓扑敏感性的连续限制。
We calculate the low-lying glueball spectrum of the SU(3) lattice gauge theory in 3+1 dimensions for the range of beta up to beta=6.50 using the standard plaquette action. We do so for states in all the representations R of the cubic rotation group, and for both values of parity P and charge conjugation C. We extrapolate these results to the continuum limit of the theory using the confining string tension as our energy scale. We also present our results in units of the r0 scale and, from that, in terms of physical `GeV' units. For a number of these states we are able to identify their continuum spins J with very little ambiguity. We also calculate the topological charge Q of the lattice gauge fields so as to show that we have sufficient ergodicity throughout our range of beta, and we calculate the multiplicative renormalisation of Q as a function of beta. We also obtain the continuum limit of the SU(3) topological susceptibility.