论文标题

有关戒指的更多信息$ b_1(x)$和$ b_1^*(x)$

More on the rings $B_1(X)$ and $B_1^*(X)$

论文作者

Mondal, Atanu, Ray, A. Deb

论文摘要

本文主要集中在拓扑空间上所有有界的Baire的环上。统一规范拓扑是由所有有界Baire一个功能的集合中定义的$ \ sup $ -norm引起的。关于此拓扑,$ b_1^*(x)$是拓扑环。事实证明,在统一的规范拓扑下,所有单元的集合形成了一个开放式集合,因此,$ b_1^*(x)$的每个最大理想都在$ b_1^*(x)$中,具有统一的规范拓扑。由于$ b_1(x)$上的统一规范拓扑的自然扩展是$ b_1^*(x)\ neq b_1(x)$的自然扩展,但没有显示这些功能,因此在$ b_1(x)上定义了一种称为$ m_b $ - 学位的拓扑,以在$ b_1(x)上实现这些结果,以在$ b_1(x)$上实现这些结果。事实证明,相对$ m_b $拓扑与$ b_1^*(x)$的统一规范拓扑相吻合,并且仅当$ b_1(x)= b_1^*(x)$。此外,当$ b_1(x)$带有$ m_b $ -topology时,当时仅当$ b_1(x)= b_1^*(x)$时,仅是第1次计数。 \\本文的最后一部分建立了$ b_1^*(x)$的理想与$ z_b $ -filters的特殊类别之间的对应关系,称为$ e_b $ -filters在普通拓扑空间$ x $上。还可以观察到,对于普通空间,所有最大理想的基础性$ b_1(x)$,而$ b_1^*(x)$的基础性是相同的。

This paper focuses mainly on the ring of all bounded Baire one functions on a topological space. The uniform norm topology arises from the $\sup$-norm defined on the collection $B_1^*(X)$ of all bounded Baire one functions. With respect to this topology, $B_1^*(X)$ is a topological ring. It is proved that under uniform norm topology, the set of all units forms an open set and as a consequence of it, every maximal ideal of $B_1^*(X)$ is closed in $B_1^*(X)$ with uniform norm topology. Since the natural extension of uniform norm topology on $B_1(X)$, when $B_1^*(X) \neq B_1(X)$, does not show up these features, a topology called $m_B$-topology is defined on $B_1(X)$ suitably to achieve these results on $B_1(X)$. It is proved that the relative $m_B$ topology coincides with the uniform norm topology on $B_1^*(X)$ if and only if $B_1(X) = B_1^*(X)$. Moreover, $B_1(X)$ with $m_B$-topology is 1st countable if and only if $B_1(X) = B_1^*(X)$. \\ The last part of the paper establishes a correspondence between the ideals of $B_1^*(X)$ and a special class of $Z_B$-filters, called $e_B$-filters on a normal topological space $X$. It is also observed that for normal spaces, the cardinality of the collection of all maximal ideals of $B_1(X)$ and those of $B_1^*(X)$ are the same.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源