论文标题

Lorentzian KAC-MOODY代数和Hilbert of点数K3表面上的亲密关系

Affinizations of Lorentzian Kac-Moody Algebras and Hilbert Schemes of Points on K3 Surfaces

论文作者

DeHority, Samuel

论文摘要

对于一类K3表面,谎言代数的作用是对Kac-Moody代数的某种损害,这是在表面上1等级1 torsion无托管的模量空间的共同体上给出的。该动作是由Bridgeland稳定对象的模量空间之间的对应关系生成的,并且相当于使用顶点算子的傅立叶系数定义的动作。还有其他两个结果包括:更一般的结果,在Bridgeland稳定物体稳定物体的模量空间上给出了符合自然条件的K3表面上的几何有限维度代数作用,并且对某些Quiver品种的几何模块化解释了仿射量的ADE Quivers。

For a class of K3 surfaces, the action of a Lie algebra which is a certain affinization of a Kac-Moody algebra is given on the cohomology of the moduli spaces of rank 1 torsion free sheaves on the surface. This action is generated by correspondences between moduli spaces of Bridgeland stable objects on the surface, and is equivalent to an action defined using Fourier coefficients of vertex operators. Two other results are included: a more general result giving geometric finite dimensional Lie algebra actions on moduli spaces of Bridgeland stable objects on K3 surfaces subject to natural conditions and a geometric modular interpretation of some quiver varieties for affine ADE quivers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源