论文标题

全局随机优化粒子滤清器算法

A Global Stochastic Optimization Particle Filter Algorithm

论文作者

Gerber, Mathieu, Douc, Randal

论文摘要

在目标函数是多模式和/或具有鞍点的情况下,我们引入了一种新的在线算法,以实现预期的对数可能最大化,我们称为G-PFSO。 G-PFSO支撑的关键元素是概率分布,该概率分布(a)显示出随着样本量的增加而集中于目标参数值,并且(b)可以通过标准的粒子滤波器算法有效地估计。该分布取决于学习率,在学习率中,学习率越快,其越快地集中在搜索空间的所需元素上,但是G-PFSO逃脱了目标函数的局部最佳最佳。为了以缓慢的学习率达到快速收敛速度,G-PFSO利用了平均的加速性能,在随机梯度文献中众所周知。考虑到几个具有挑战性的估计问题,数值实验表明,G-PFSO的概率很高,成功地找到了目标函数的最高模式,并以最佳的速率收敛到其全局最大化器。尽管这项工作的重点是预期的对数可能最大化,但提出的方法及其理论更普遍地用于优化通过期望定义的函数。

We introduce a new online algorithm for expected log-likelihood maximization in situations where the objective function is multi-modal and/or has saddle points, that we term G-PFSO. The key element underpinning G-PFSO is a probability distribution which (a) is shown to concentrate on the target parameter value as the sample size increases and (b) can be efficiently estimated by means of a standard particle filter algorithm. This distribution depends on a learning rate, where the faster the learning rate the quicker it concentrates on the desired element of the search space, but the less likely G-PFSO is to escape from a local optimum of the objective function. In order to achieve a fast convergence rate with a slow learning rate, G-PFSO exploits the acceleration property of averaging, well-known in the stochastic gradient literature. Considering several challenging estimation problems, the numerical experiments show that, with high probability, G-PFSO successfully finds the highest mode of the objective function and converges to its global maximizer at the optimal rate. While the focus of this work is expected log-likelihood maximization, the proposed methodology and its theory apply more generally for optimizing a function defined through an expectation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源