论文标题
无限相互作用粒子系统在连续配置空间上的衰减
Decay of semigroup for an infinite interacting particle system on continuum configuration spaces
论文作者
论文摘要
我们显示了热内核类型方差衰减$ t^{ - \ frac {d} {2}} $,最多可对数校正,用于在$ \ mathbb {r}^d $上的无限粒子系统上的半群,每个粒子在每个粒子上都在每个粒子与差异配置之后均与差异依赖性依赖性依赖性的依赖性依赖于差异,从而依赖于差异。证明依赖于$ \ mathbb {z}^d $ Zero范围模型的策略,并将本地化估计值概括为S. Albeverio,Y.G。引入的连续配置空间。 Kondratiev和M.Röckner。
We show the heat kernel type variance decay $t^{-\frac{d}{2}}$, up to a logarithmic correction, for the semigroup of an infinite particle system on $\mathbb{R}^d$, where every particle evolves following a divergence-form operator with diffusivity coefficient that depends on the local configuration of particles. The proof relies on the strategy from $\mathbb{Z}^d$ zero range model, and generalizes the localization estimate to the continuum configuration space introduced by S. Albeverio, Y.G. Kondratiev and M. Röckner.