论文标题

边缘对应:带手性对称性的边界式拓扑阶段

Edge-Corner Correspondence: Boundary-Obstructed Topological Phases with Chiral Symmetry

论文作者

Ezawa, Motohiko

论文摘要

散装对应关系是拓扑绝缘子和超导体的特征。我们将此概念概括为散装的对应关系和边缘角对应关系。在散装角(边缘)对应关系中,拓扑数是为散装(边缘)定义的,而拓扑阶段则由零能量角状态的出现证明。结果表明,最近提出的边界刺激性拓扑阶段是边缘 - 角相应类型,而高阶拓扑阶段则分类为散装的 - corner-corner-corntence类型和边缘 - 角相应类型。我们构建了一个简单的模型,该模型基于两个具有$ s $ - 波,$ d $ - 波和$ s _ {\ pm} $ - 波配对的Chern绝缘子的对应关系。可以定义边缘汉密尔顿人的拓扑数,并且在拓扑阶段我们具有零能量角状态。通过测量拓扑电路的阻抗共振,可以观察到零能量角状态的出现。

The bulk-edge correspondence characterizes topological insulators and superconductors. We generalize this concept to the bulk-corner correspondence and the edge-corner correspondence in two dimensions. In the bulk-corner (edge-corner) correspondence, the topological number is defined for the bulk (edge), while the topological phase is evidenced by the emergence of zero-energy corner states. It is shown that the boundary-obstructed topological phases recently proposed are the edge-corner-correspondence type, while the higher-order topological phases are classified into the bulk-corner-correspondence type and the edge-corner-correspondence type. We construct a simple model exhibiting the edge-corner correspondence based on two Chern insulators having the $s$-wave, $d$-wave and $s_{\pm }$-wave pairings. It is possible to define topological numbers for the edge Hamiltonians, and we have zero-energy corner states in the topological phase. The emergence of zero-energy corner states is observable by measuring the impedance resonance in topological electric circuits.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源