论文标题
亚国家麻疹的时空平滑模型常规免疫覆盖范围估算复杂的调查数据
Space-time smoothing models for sub-national measles routine immunization coverage estimation with complex survey data
论文作者
论文摘要
尽管全球麻疹疫苗接种的巨大进展,但在许多低收入和中等收入国家中,麻疹疾病负担仍然很高。除了通过常规免疫(RI)计划进行预定的疫苗外,还要以这种高负荷环境控制麻疹的关键公共卫生战略是以大规模疫苗接种运动的形式进行补充免疫活动(SIAS)。为了实现RI和SIA的平衡实现,对次国RI特异性覆盖范围的强大度量至关重要。在本文中,我们开发了一个时空平滑模型,用于估计使用复杂的调查数据在次国国家级别上首次剂量含麻疹的疫苗(MCV1)的RI特异性覆盖率。激发这项工作的应用是估计尼日利亚36个州和联邦首都地区RI特定的MCV1覆盖范围。数据来自四项人口统计和健康调查,三个多重指标集群调查以及2003年至2018年间在尼日利亚进行的两项国家营养和健康调查。我们的方法结合了世界卫生组织发布的SIA日历中的信息,并说明了SIAS对SIAS对整体MCV1覆盖率的影响,如横截面Surve的总体MCV1覆盖范围。该模型可用于分析具有不同数据收集方案的多个调查的数据,并具有反映各种采样设计的不确定性构造覆盖量估计值。可以使用集成的嵌套拉普拉斯近似(INLA)有效地实现我们的方法。
Despite substantial advances in global measles vaccination, measles disease burden remains high in many low- and middle-income countries. A key public health strategy for controling measles in such high-burden settings is to conduct supplementary immunization activities (SIAs) in the form of mass vaccination campaigns, in addition to delivering scheduled vaccination through routine immunization (RI) programs. To achieve balanced implementations of RI and SIAs, robust measurement of sub-national RI-specific coverage is crucial. In this paper, we develop a space-time smoothing model for estimating RI-specific coverage of the first dose of measles-containing-vaccines (MCV1) at sub-national level using complex survey data. The application that motivated this work is estimation of the RI-specific MCV1 coverage in Nigeria's 36 states and the Federal Capital Territory. Data come from four Demographic and Health Surveys, three Multiple Indicator Cluster Surveys, and two National Nutrition and Health Surveys conducted in Nigeria between 2003 and 2018. Our method incorporates information from the SIA calendar published by the World Health Organization and accounts for the impact of SIAs on the overall MCV1 coverage, as measured by cross-sectional surveys. The model can be used to analyze data from multiple surveys with different data collection schemes and construct coverage estimates with uncertainty that reflects the various sampling designs. Implementation of our method can be done efficiently using integrated nested Laplace approximation (INLA).