论文标题
Amitsur的伪差异操作员的类似物的类似物
An analogue of Amitsur's property for the ring of pseudo-differential operators
论文作者
论文摘要
令r为具有推导δ的环。在本文中,我们证明了Amitsur特性的类似物适用于伪差异算子圈的左T-静态径向rings r(((x^{ - 1};δ)),其中r是Delta兼容的环。作为这一事实的直接结果,我们获得了r((x^{ - 1};δ)的素基的替代表征)。
Let R be a ring with a derivation δ. In this paper, we prove that an analogue of Amitsur's property holds for left T-nilpotent radideals of pseudo-differential operator rings R((x^{-1}; δ)), where R is a delta-compatible ring. As a direct consequence of this fact, we obtain an alternative characterization of the prime radical of R((x^{-1}; δ)).