论文标题

与时间相关耦合的谐波振荡器系统中的量子松弛

Quantum relaxation in a system of harmonic oscillators with time-dependent coupling

论文作者

Lustosa, F. B., Colin, S., Bergliaffa, S. E. Perez

论文摘要

在de Broglie -Bohm试验波理论的背景下,简单系统的数值模拟表明,最初超出量子平衡的状态 - 因此违反了诞生规则 - 通常会随着时间的推移而放松到预期的$ | |ψ|^2 $分布在粗粒度的水平上。我们分析了一个耦合的一维谐波振荡器系统的非平衡初始分布的松弛,其中耦合通过数值模拟明确地依赖于时间,重点是不同参数的影响,例如模式,粗粒长度和耦合常数。我们表明,这里研究的系统倾向于平衡,但是可以根据参数的值,尤其是与相互作用强度相关的参数值来阻碍弛豫。讨论了对遗物非平衡系统检测的可能影响。

In the context of the de Broglie-Bohm pilot wave theory, numerical simulations for simple systems have shown that states that are initially out of quantum equilibrium - thus violating the Born rule - usually relax over time to the expected $|ψ|^2$ distribution on a coarse-grained level. We analyze the relaxation of nonequilibrium initial distributions for a system of coupled one-dimensional harmonic oscillators in which the coupling depends explicitly on time through numerical simulations, focusing in the influence of different parameters such as the number of modes, the coarse-graining length and the coupling constant. We show that in general the system studied here tends to equilibrium, but the relaxation can be retarded depending on the values of the parameters, particularly to the one related to the strength of the interaction. Possible implications on the detection of relic nonequilibrium systems are discussed.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源