论文标题

$ 6D $,$ {\ cal n} =(1,0)$ SUPESMYPERSMEMEMEMEMEMEMEMEMEMEMEMEMEMEMETER GAUGE理论的重新归一化结构

The renormalization structure of $6D$, ${\cal N}=(1,0)$ supersymmetric higher-derivative gauge theory

论文作者

Buchbinder, I. L., Ivanov, E. A., Merzlikin, B. S., Stepanyantz, K. V.

论文摘要

我们认为高衍生$ 6D $,$ {\ cal n} =(1,0)$ supersymmetric仪表理论及其最小耦合到超级人的谐波。在组件中,仪表场的动力学术语涉及四个时空导数。我们评估差异的表面程度,并证明它与环数的数量无关。使用尺寸降低的正则化,我们发现可能的反应,并表明可以通过任何数量的循环耦合恒定重归化将其去除,而超级群体中的差异根本不存在。假设固定项与Feynman仪表中的偏差相差很小,我们在此偏差中明确计算了以最低顺序计算一环有效作用的不同部分。在考虑的近似值中,结果独立于量规参数,并且同意该理论的早期计算而没有超人的计算。

We consider the harmonic superspace formulation of higher-derivative $6D$, ${\cal N}=(1,0)$ supersymmetric gauge theory and its minimal coupling to a hypermultiplet. In components, the kinetic term for the gauge field in such a theory involves four space-time derivatives.The theory is quantized in the framework of the superfield background method ensuring manifest $6D$, ${\cal N}=(1,0)$ supersymmetry and the classical gauge invariance of the quantum effective action. We evaluate the superficial degree of divergence and prove it to be independent of the number of loops. Using the regularization by dimensional reduction, we find possible counterterms and show that they can be removed by the coupling constant renormalization for any number of loops, while the divergences in the hypermultiplet sector are absent at all. Assuming that the deviation of the gauge-fixing term from that in the Feynman gauge is small, we explicitly calculate the divergent part of the one-loop effective action in the lowest order in this deviation. In the approximation considered, the result is independent of the gauge-fixing parameter and agrees with the earlier calculation for the theory without a hypermultiplet.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源