论文标题
数据驱动的多目标控制器优化磁性纳米定位系统
Data-Driven Multi-Objective Controller Optimization for a Magnetically-Levitated Nanopositioning System
论文作者
论文摘要
通过传统的基于模型的控制系统设计方法实现的性能通常在很大程度上依赖于运动动力学的准确建模。但是,建模当今日益复杂的系统的真实动态可能是一项极具挑战性的任务。而且通常必要的实际近似值通常会导致自动化系统在非最佳状态下运行。在多轴磁性脱水的纳米定位系统的情况下,该问题可能会大大加剧,在这种情况下,完全浮动的行为和多轴耦合使得非常准确地识别运动动力学很大程度上是不可能的。另一方面,在许多相关的工业自动化应用中,例如,使用Maglev系统的扫描过程,涉及重复性动作,可能会在非最佳条件下产生大量运动数据。这些运动数据基本包含丰富的信息;因此,存在开发智能自动化系统以从这些运动数据中学习并驱动系统以数据驱动方式运行最佳性的可能性。然后,本文提出了一种数据驱动的控制器优化方法,该方法从过去的非最佳运动数据中学习到迭代地改善运动控制性能。具体而言,提出了一种新型的数据驱动的多目标优化方法,该方法能够纯粹基于测量的运动数据自动估算梯度和黑森。多目标成本函数适当地设计,以考虑平滑而准确的轨迹跟踪。然后,在Maglev纳米定位系统上进行实验,以证明所提出的方法的有效性,结果清楚地表明,我们的方法对相关的复杂机器人系统的实际吸引力,没有准确的模型。
The performance achieved with traditional model-based control system design approaches typically relies heavily upon accurate modeling of the motion dynamics. However, modeling the true dynamics of present-day increasingly complex systems can be an extremely challenging task; and the usually necessary practical approximations often render the automation system to operate in a non-optimal condition. This problem can be greatly aggravated in the case of a multi-axis magnetically-levitated nanopositioning system where the fully floating behavior and multi-axis coupling make extremely accurate identification of the motion dynamics largely impossible. On the other hand, in many related industrial automation applications, e.g., the scanning process with the maglev system, repetitive motions are involved which could generate a large amount of motion data under non-optimal conditions. These motion data essentially contain rich information; therefore, the possibility exists to develop an intelligent automation system to learn from these motion data and to drive the system to operate towards optimality in a data-driven manner. Along this line then, this paper proposes a data-driven controller optimization approach that learns from the past non-optimal motion data to iteratively improve the motion control performance. Specifically, a novel data-driven multi-objective optimization approach is proposed that is able to automatically estimate the gradient and Hessian purely based on the measured motion data; the multi-objective cost function is suitably designed to take into account both smooth and accurate trajectory tracking. Experiments are then conducted on the maglev nanopositioning system to demonstrate the effectiveness of the proposed method, and the results show rather clearly the practical appeal of our methodology for related complex robotic systems with no accurate model available.