论文标题

隧穿动力学的变异方法。应用于热超流体费米系统。自发和诱导裂变

Variational Approach to Tunneling Dynamics. Application to Hot Superfluid Fermi Systems. Spontaneous and Induced Fission

论文作者

Levit, Shimon

论文摘要

我们引入了一个一般的变分框架,以解决热费米系统的隧道。我们使用虚构时间$τ= IT $繁殖器的痕迹的表示形式作为在中间传播切片处的完整状态集的功能积分类型。我们假设这些状态是$τ$依赖性的,并且由任意试验的哈密顿$ H_0(τ)$生成。然后,我们使用凸性不等式来推导$ H_0(τ)$控制的变异性绑定,以实现试验功能。该功能具有由两个部分组成的一般结构 - 统计加权的量子渗透性和动力学隧道熵。我们研究了这种结构如何结合热费米系统的隧道基本物理。使用变异不等式可以优化控制动作功能的动态参数,以选择试验问题。 作为应用程序,我们采用$ H_0(τ)$来描述非相互作用的Bogoliubov-De Gennes(BDG)清理的假想时间动力学。优化其动力学参数,我们将热费米系统的隧道理论扩展到Hartree-fock-Bogoliubov(HFB)帧,并得出假想时间温度依赖的BDG平均场方程的相应概括。 与试用行动一样,这些方程的突出特征是量子动力学和熵统计效应之间的不可分割的相互作用。在零温度限制中,这些方程式描述了超流体费米系统(核物理学自发裂变)的“错误基态”隧道衰变。随着激发能量的增加(有效温度),衰减过程逐渐从纯量子隧穿到统计“瓶颈”逃生机构。

We introduce a general variational framework to address the tunneling of hot Fermi systems. We use the representation of the trace of the imaginary time $τ=it$ propagator as a functional integral type of a sum over complete sets of states at intermediate propagation slices. We assume that these states are $τ$-dependent and generated by an arbitrary trial Hamiltonian $H_0(τ)$. We then use the convexity inequality to derive $H_0(τ)$ controlled variational bound for a trial action functional. This functional has a general structure consisting of two parts - statistically weighted quantum penetrability and dynamical tunneling entropy. We examine how this structure incorporates the basic physics of tunneling of hot Fermi systems. Using the variational inequality one can optimise the dynamical parameters controlling the action functional for any choice of the trial problem. As an application we take $H_0(τ)$ to describe imaginary time dynamics of non interacting Bogoliubov-de Gennes (BdG) quasiparticles. Optimising its dynamical parameters we extend the tunneling theory of hot Fermi systems to the Hartree-Fock-Bogoliubov(HFB) frame and derive the corresponding generalisation of imaginary time temperature dependent BdG mean field equations. As in the trial action the prominent feature of these equations is an inseparable interplay between quantum dynamical and entropic statistical effects. In the zero temperature limit these equations describe the "false ground state" tunneling decay of superfluid Fermi systems (spontaneous fission in nuclear physics). With increasing excitation energy (effective temperature) the decay process is gradually evolving from pure quantum tunneling to statistical "bottle neck" escape mechanism.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源