论文标题
双线性分解和发散性 - 折扣估计与当地耐力空间及其双空间有关的产品
Bilinear Decomposition and Divergence-Curl Estimates on Products Related to Local Hardy Spaces and Their Dual Spaces
论文作者
论文摘要
令$ p \ in(0,1)$,$α:= 1/p-1 $,对于[0,\ infty)$中的任何$τ\,$φ__{p}(τ)(τ):=τ/(1+τ^{1-p})$。令$ h^p(\ mathbb r^n)$,$ h^p(\ mathbb r^n)$和$λ_{nα}(\ mathbb {r}^n)$分别为hardy空间,当地的硬质空间和不菲的limschitz space on $ \ mathbb {r} n $。在本文中,应用小波的不均匀重归于,作者建立了双线性分解,以$ h^p(\ mathbb r^n)$ [或$ h^p(\ mathbb r^n)$]和$λ_{nα}(nα}(\ mathbb {\ mathbb {r}^n),并列出了这些eant bel,并列出了这些deste deste neyb,并列为有些感觉。作为应用,作者还获得了一些估计当地耐力空间中元素的产品$ h^p(\ mathbb r^n)$,分别$ p \ in(0,1] $及其双空间及其双空间,零$ \ lfloornα\ lfloornα\ rfloor $ rfloor $ -inhomogeenos $ -Inhomogeenous curl and deNlo $ n white n white n white n white n llo \ rof the最大的整数不大于$nα$。 r^n)$和$ h^{φ_p}(\ Mathbb r^n)= h^1(\ Mathbb r^n)+h^p(\ Mathbb r^n)$具有等效的quasi-norms,也证明了这两个$ h^{φ_p}(φ_p} $ MATHB r^n)的双空间重合这些结果,就当地耐力空间及其双重空间之间的乘法提供了完整的图片。
Let $p\in(0,1)$, $α:=1/p-1$ and, for any $τ\in [0,\infty)$, $Φ_{p}(τ):=τ/(1+τ^{1-p})$. Let $H^p(\mathbb R^n)$, $h^p(\mathbb R^n)$ and $Λ_{nα}(\mathbb{R}^n)$ be, respectively, the Hardy space, the local Hardy space and the inhomogeneous Lipschitz space on $\mathbb{R}^n$. In this article, applying the inhomogeneous renormalization of wavelets, the authors establish a bilinear decomposition for multiplications of elements in $h^p(\mathbb R^n)$ [or $H^p(\mathbb R^n)$] and $Λ_{nα}(\mathbb{R}^n)$, and prove that these bilinear decompositions are sharp in some sense. As applications, the authors also obtain some estimates of the product of elements in the local Hardy space $h^p(\mathbb R^n)$ with $p\in(0,1]$ and its dual space, respectively, with zero $\lfloor nα\rfloor$-inhomogeneous curl and zero divergence, where $\lfloor nα\rfloor$ denotes the largest integer not greater than $nα$. Moreover, the authors find new structures of $h^{Φ_p}(\mathbb R^n)$ and $H^{Φ_p}(\mathbb R^n)$ by showing that $h^{Φ_p}(\mathbb R^n)=h^1(\mathbb R^n)+h^p(\mathbb R^n)$ and $H^{Φ_p}(\mathbb R^n)=H^1(\mathbb R^n)+H^p(\mathbb R^n)$ with equivalent quasi-norms, and also prove that the dual spaces of both $h^{Φ_p}(\mathbb R^n)$ and $h^p(\mathbb R^n)$ coincide. These results give a complete picture on the multiplication between the local Hardy space and its dual space.