论文标题

椭圆算子本地化非热扰动下椭圆运算符基本光谱中阈值的分歧

Bifurcations of thresholds in essential spectra of elliptic operators under localized non-Hermitian perturbations

论文作者

Borisov, D. I., Zezyulin, D. A., Znojil, M.

论文摘要

我们考虑操作员$$ {\ cal h} = {\ cal h}' - \ frac {\ partial^2 \} {\ partial x_d^2} \ quad \ quad \ quad \ text {on} \quadΩ\quadΩ\quadΩ\quadΩ\ times \ mathbb {r} $ω\ subseteq \ mathbb {r}^{d-1} $是有界或无限的。符号$ {\ cal h}'$站在$ω$上的二阶自动接合差分运算符,以使操作员$ {\ cal h}'$的光谱包含几个离散的特征特征$λ_{j} $,$ j = 1,$ j = 1,\ ldots,m $。这些特征值是操作员$ {\ cal H} $的基本频谱中的阈值。我们研究这些阈值一旦添加一个小的局部扰动$ε{\ cal l}(ε)$,如何将这些阈值向操作员$ {\ cal H} $添加,其中$ε$是一个小的正参数,$ {\ cal l}(ε)$是一个抽象的,不一定是对称的操作员。我们表明,这些阈值分叉成特征值和$λ_j$附近的操作员$ {\ cal h} $的共鸣,对于足够小的$ $ε$。我们证明了确定这些共振和特征值的存在的有效简单条件,并找到了它们渐近扩张的主要术语。我们的分析适用于通用的非自动辅助扰动,尤其是以平等时间($ pt $)对称为特征的扰动。我们结果的潜在应用包含了由分散或衍射效应控制的广泛的物理系统。我们使用我们的发现来开发一种方案,用于具有可控制的非富特光学状态,具有正常的功率,并且在连续体中具有复杂价值传播常数的实际一部分。相应的本征函数可以解释为嵌入连续体中的结合状态的光概括。在一个特定的例子中,通过对扰动光谱的直接数值评估,证实了渐近扩张的持久性。

We consider the operator $${\cal H} = {\cal H}' -\frac{\partial^2\ }{\partial x_d^2} \quad\text{on}\quadω\times\mathbb{R}$$ subject to the Dirichlet or Robin condition, where a domain $ω\subseteq\mathbb{R}^{d-1}$ is bounded or unbounded. The symbol ${\cal H}'$ stands for a second order self-adjoint differential operator on $ω$ such that the spectrum of the operator ${\cal H}'$ contains several discrete eigenvalues $Λ_{j}$, $j=1,\ldots, m$. These eigenvalues are thresholds in the essential spectrum of the operator ${\cal H}$. We study how these thresholds bifurcate once we add a small localized perturbation $ε{\cal L}(ε)$ to the operator ${\cal H}$, where $ε$ is a small positive parameter and ${\cal L}(ε)$ is an abstract, not necessarily symmetric operator. We show that these thresholds bifurcate into eigenvalues and resonances of the operator ${\cal H}$ in the vicinity of $Λ_j$ for sufficiently small $ε$. We prove effective simple conditions determining the existence of these resonances and eigenvalues and find the leading terms of their asymptotic expansions. Our analysis applies to generic non-self-adjoint perturbations and, in particular, to perturbations characterized by the parity-time ($PT$) symmetry. Potential applications of our result embrace a broad class of physical systems governed by dispersive or diffractive effects. We use our findings to develop a scheme for a controllable generation of non-Hermitian optical states with normalizable power and real part of the complex-valued propagation constant lying in the continuum. The corresponding eigenfunctions can be interpreted as an optical generalization of bound states embedded in the continuum. For a particular example, the persistence of asymptotic expansions is confirmed with direct numerical evaluation of the perturbed spectrum.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源