论文标题

离散化Anosov流量的最小不稳定层压的独特性

Uniqueness of minimal unstable lamination for discretized Anosov flows

论文作者

Guelman, Nancy, Martinchich, Santiago

论文摘要

我们将部分双曲线差异性$ f:m \至m $作为拓扑anosov流的离散化。对于这些系统,我们显示出最小的不稳定层压的独特性,只要基础的Anosov流是传递的,而不是等于悬浮液的轨道。结果,获得了准吸引者的唯一性。如果基本的Anosov流量不是传递性的,我们将获得类似的有限结果,只要限制其吸引其任何吸引基本碎片的流量不是悬架。对于某些一维中心偏离产品,也获得了类似的唯一结果。

We consider the class of partially hyperbolic diffeomorphisms $f:M\to M$ obtained as the discretization of topological Anosov flows. We show uniqueness of minimal unstable lamination for these systems provided that the underlying Anosov flow is transitive and not orbit equivalent to a suspension. As a consequence, uniqueness of quasi-attractors is obtained. If the underlying Anosov flow is not transitive we get an analogous finiteness result provided that the restriction of the flow to any of its attracting basic pieces is not a suspension. A similar uniqueness result is also obtained for certain one-dimensional center skew-products.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源