论文标题
更高的批评比较两个大频率表,对可能的罕见和弱差异敏感
Higher Criticism to Compare Two Large Frequency Tables, with sensitivity to Possible Rare and Weak Differences
论文作者
论文摘要
我们将更高的批评(HC)调整为两个频率表的比较,这些频率表可能(也可能不会)在表中表中表现出适度的差异,其中一些未知的,相对较小的子集中在大量类别中。我们对拟议的HC测试功能的分析量化了假定差异的稀有性和大小,并应用中度偏差 - 分析以确定我们提出的HC程序的渐近强度/无能为力。 我们的分析认为,基本生成模型与罕见/弱扰动替代方案无差异的零假设,在$ n $类别中,$ n^{1-β} $的频率在$ n $类别中受到$ r(\ log log n)/2n $的扰动。这里$ n $是每个样本的大小。我们提出的更高批评(HC)对此环境的测试使用了从$ N $精确二项式测试获得的P值。我们根据稀有参数$β$和扰动强度参数$ r $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ r $来表征基于HC测试的渐近性能。具体而言,我们在$(β,r)$ - 平面中得出一个区域,该平面渐近地具有最大功率,而在该区域之外没有渐近的功率。我们的分析区分了两个表中计数均低的情况,而计数较高的情况是对应于稀疏和密集频率表的情况。高计方案中HC的相变曲线正式匹配HC在两个样本的正常均值模型中提供的曲线。
We adapt Higher Criticism (HC) to the comparison of two frequency tables which may -- or may not -- exhibit moderate differences between the tables in some unknown, relatively small subset out of a large number of categories. Our analysis of the power of the proposed HC test quantifies the rarity and size of assumed differences and applies moderate deviations-analysis to determine the asymptotic powerfulness/powerlessness of our proposed HC procedure. Our analysis considers the null hypothesis of no difference in underlying generative model against a rare/weak perturbation alternative, in which the frequencies of $N^{1-β}$ out of the $N$ categories are perturbed by $r(\log N)/2n$ in the Hellinger distance; here $n$ is the size of each sample. Our proposed Higher Criticism (HC) test for this setting uses P-values obtained from $N$ exact binomial tests. We characterize the asymptotic performance of the HC-based test in terms of the rarity parameter $β$ and the perturbation intensity parameter $r$. Specifically, we derive a region in the $(β,r)$-plane where the test asymptotically has maximal power, while having asymptotically no power outside this region. Our analysis distinguishes between cases in which the counts in both tables are low, versus cases in which counts are high, corresponding to the cases of sparse and dense frequency tables. The phase transition curve of HC in the high-counts regime matches formally the curve delivered by HC in a two-sample normal means model.