论文标题

b-articulation Points和b-Bridges在强烈双连接的有向图中

b-articulation points and b-bridges in strongly biconnected directed graphs

论文作者

Jaberi, Raed

论文摘要

如果$ g $连接$ g $,并且$ g $的基础图是双连接的,则指示图$ g =(v,e)$被称为强烈双连接。这类定向图最初是由Wu和Grumbach引入的。令$ g =(v,e)$是一个强烈双连接的有向图。如果子图$ g \ setMinus \ left \ lbrace e \ right \ rbrace =(v,e \ setminus \ left \ laws \ lbrace e \ right \ rbrace $),e $中的边缘$ e \是b桥。如果$ g \ setminus \ left \ lbrace w \ right \ rbrace $不是强烈的双重连接,则V $中的顶点$ w \是一个b-提示点,其中$ g \ setminus \ setMinus \ left \ lbrace w \ lbrace w \ rbrace \ rbrace $ rbrace $是从$ g $中获得的$ g $。在本文中,我们研究了b-articulation Points和b-bridges。

A directed graph $G=(V,E)$ is called strongly biconnected if $G$ is strongly connected and the underlying graph of $G$ is biconnected. This class of directed graphs was first introduced by Wu and Grumbach. Let $G=(V,E)$ be a strongly biconnected directed graph. An edge $e\in E$ is a b-bridge if the subgraph $G\setminus \left\lbrace e\right\rbrace =(V,E\setminus \left\lbrace e\right\rbrace) $ is not strongly biconnected. A vertex $w\in V$ is a b-articulation point if $G\setminus \left\lbrace w\right\rbrace$ is not strongly biconnected, where $G\setminus \left\lbrace w\right\rbrace$ is the subgraph obtained from $G$ by removing $w$. In this paper we study b-articulation points and b-bridges.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源