论文标题

验证Fisher阶段IV光谱调查的方法

Validating the Fisher approach for stage IV spectroscopic surveys

论文作者

Yahia-Cherif, S., Blanchard, A., Camera, S., Ilić, S., Markovič, K., Pourtsidou, A., Sakr, Z., Sapone, D., Tutusaus, I.

论文摘要

近年来,预测活动已成为设计和优化大规模结构调查的非常重要的工具。为了预测此类调查的性能,Fisher矩阵形式主义经常用作一种快速简便的方法来计算宇宙参数的约束。其中的研究是对黑暗能源的性质的研究,这是现代宇宙学的主要目标之一。因此,优点(FOM)提供了调查限制暗能量的力量的度量。这被定义为由chevallier-polarski-lindersation中的状态参数的暗能量方程$ \ {w_0,w_a \} $给出的表面轮廓的倒数,可以从参数参数的协方差矩阵来评估。该协方差矩阵作为Fisher矩阵的倒数。如果估计渔民基质的元素的精度不足,则反转不良矩阵可能会导致协方差系数的较大误差。条件号是一个度量标准,可为可靠的反转提供数学下限,但对于尺寸大于$ 2 \ times2 $的Fisher矩阵来说,它通常太严格了。在本文中,我们提出了一种一般数值方法,以保证像FOM一样的推断约束。它由带有给定幅度的高斯扰动的Fisher矩阵元素随机振动(扰动),然后评估将FOM保持在所选精度之内的最大幅度。然后可以相应地选择用于计算Fisher矩阵元素的数值衍生物和积分中的步骤,以使Fisher矩阵元素的精度保持在此最大幅度以下...

In recent years forecasting activities have become a very important tool for designing and optimising large scale structure surveys. To predict the performance of such surveys, the Fisher matrix formalism is frequently used as a fast and easy way to compute constraints on cosmological parameters. Among them lies the study of the properties of dark energy which is one of the main goals in modern cosmology. As so, a metric for the power of a survey to constrain dark energy is provided by the Figure of merit (FoM). This is defined as the inverse of the surface contour given by the joint variance of the dark energy equation of state parameters $\{w_0,w_a\}$ in the Chevallier-Polarski-Linder parameterisation, which can be evaluated from the covariance matrix of the parameters. This covariance matrix is obtained as the inverse of the Fisher matrix. Inversion of an ill-conditioned matrix can result in large errors on the covariance coefficients if the elements of the Fisher matrix have been estimated with insufficient precision. The conditioning number is a metric providing a mathematical lower limit to the required precision for a reliable inversion, but it is often too stringent in practice for Fisher matrices with size larger than $2\times2$. In this paper we propose a general numerical method to guarantee a certain precision on the inferred constraints, like the FoM. It consists on randomly vibrating (perturbing) the Fisher matrix elements with Gaussian perturbations of a given amplitude, and then evaluating the maximum amplitude that keeps the FoM within the chosen precision. The steps used in the numerical derivatives and integrals involved in the calculation of the Fisher matrix elements can then be chosen accordingly in order to keep the precision of the Fisher matrix elements below this maximum amplitude...

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源