论文标题

KERR振荡器中的驱动 - 触及相变:从半经典$ \ Mathcal {pt} $对称到量子波动

Driven-dissipative phase transition in a Kerr oscillator: From semiclassical $\mathcal{PT}$ symmetry to quantum fluctuations

论文作者

Zhang, Xin H. H., Baranger, Harold U.

论文摘要

我们研究了具有驱动式量子相变的最小模型,即受驾驶和耗散的Kerr非线性振荡器。使用均值场理论,确切的对角度和Keldysh形式主义,我们分析了该系统中的批判现象,显示每种方法可以捕获哪些方面以及方法如何相互补充。然后,使用量子Langevin方程来分析计算临界缩放和有限尺寸的缩放标度。这个简单模型中包含的物理学非常丰富:它包括连续的相变,$ z_ {2} $对称性破坏,$ \ Mathcal {pt} $对称性,状态压缩和关键波动。由于其简单性和可溶性,该模型可以用作探索开放量子多体物理学的范例。

We study a minimal model that has a driven-dissipative quantum phase transition, namely a Kerr non-linear oscillator subject to driving and dissipation. Using mean-field theory, exact diagonalization, and the Keldysh formalism, we analyze the critical phenomena in this system, showing which aspects can be captured by each approach and how the approaches complement each other. Then critical scaling and finite-size scaling are calculated analytically using the quantum Langevin equation. The physics contained in this simple model is surprisingly rich: it includes a continuous phase transition, $Z_{2}$ symmetry breaking, $\mathcal{PT}$ symmetry, state squeezing, and critical fluctuations. Due to its simplicity and solvability, this model can serve as a paradigm for exploration of open quantum many-body physics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源