论文标题

有限集的建设性封面

Constructive covers of a finite set

论文作者

Ararat, Çağın, Gürler, Ülkü, Ildız, M. Emrullah

论文摘要

给定积极的整数$ n,k $带有$ k \ leq n $,我们考虑选择$ k $ subset的$ \ {1,\ ldots,n \} $的方法,以使这些子集的结合给出$ \ {1,\ ldots,n \} $,并且它们不是彼此的子集。我们将这种选择的选择称为建设性$ k $ - 覆盖物,并提供一个半分析的求和公式来计算$ \ {1,\ ldots,n \} $的确切构建性$ k $ - covers。总结中的每个术语都是第二类Stirl数字的新变体的乘积,称为集成的Stirling号码,以及某个集合的基数,我们通过基于优化的过程计算出,该过程对二进制变量进行了无良好的剪辑。

Given positive integers $n,k$ with $k\leq n$, we consider the number of ways of choosing $k$ subsets of $\{1,\ldots,n\}$ in such a way that the union of these subsets gives $\{1,\ldots,n\}$ and they are not subsets of each other. We refer to such choices of sets as constructive $k$-covers and provide a semi-analytic summation formula to calculate the exact number of constructive $k$-covers of $\{1,\ldots,n\}$. Each term in the summation is the product of a new variant of Stirling numbers of the second kind, referred to as integrated Stirling numbers, and the cardinality of a certain set which we calculate by an optimization-based procedure with no-good cuts for binary variables.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源